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The present review, containing 178 references, is dedicated to one of the largest and
most important branches of the rarefied gas dynamics, namely internal flows. A critical
analysis of the corresponding numerical data and analytical results available in the litera-
ture was made. The most reliable data were selected and tabulated. The review will be
useful as a reference for mathematicians, physicists and aerodynamicists interested in
rarefied gas flows. In this paper the complete ranges of the main parameters, determining
rarefied gas flows through a capillary, are covered. The capillary length varies from zero,
when the capillary degenerates into a thin orifice, to infinity when the end effects can be
neglected. The Knudsen number, characterizing the gas rarefaction, varies from zero
when the gas is considered as a continuous medium to infinity when the intermolecular
collisions can be discounted. The pressure and temperature drops on the capillary ends
vary from the small values when the linear theory is valid to the large values when the
nonlinear equations must be applied. The influence of the gas–surface interaction is
considered. ©1998 American Institute of Physics and American Chemical Society.
@S0047-2689~98!00103-2#
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RGD Rarefied Gas Dynamics, Sec. 1.1.
TPD Thermomolecular pressure difference, Sec. 1.2.

1. Introduction

1.1. Scope of the Review

Rarefied gas dynamics~RGD! is an active and fast devel-
oping scientific field. A biennial symposium attracts a large
number of scientists and engineers working in this field. Re-
cently, some monographs11,27,30 describing latest achieve-
ments in the RGD were published. The starting point of the
rarefied gas theory is the kinetic Boltzmann equation. An-
other very important aspect of the theory is the gas–surface
interaction, which serves as a boundary condition for the
kinetic equation. The monographs mentioned above describe
the main properties of the kinetic equation, the properties of
its boundary condition, and the principal methods of solution
of the Boltzmann equation. So, they provide general infor-
mation about the rarefied gas theory.

The present review is dedicated to one of the largest and
most important branches of the RGD, namely the internal
rarefied gas flows. The knowledge of this branch is appli-
cable in many technologies such as: vacuum equipment,
chemical apparatus, spaceship construction etc. Moreover,
this branch plays a significant role in the development of the
RGD as a whole. Because of the simplicity of numerical
calculations, some types of internal rarefied gas flows serve
as a test problem for new numerical methods. These flows
are very sensitive to the nature of the gas–surface interac-
tion. That is why they are used for indirect measurements of
the gas–surface interaction parameters. To realize this task,
an experimenter needs exact values of the mass flow rates
through a capillary as a function of the gas rarefaction and of
the gas–surface interaction parameters.

Today, much theoretical data on the internal gas flows are
available in the literature. These data have not been widely
applied by experimenters and engineers even though it is
possible. There are three main reasons for this.

~1! The material on the rarefied gas flows is dispersed in
many papers. Each describes only one aspect of the
problem, while the flows depend on many parameters
including the gas rarefaction, the geometrical size of the
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capillary, the nature of the gas–surface interaction, and
the nature of the intermolecular interaction.

~2! The theoretical results in this field are usually presented
in terms of the microparameters such as the molecular
mean free path and frequency of the intermolecular col-
lisions. A special terminology was formed in the corre-
sponding papers, which cannot be understood without
the profound knowledge of the kinetic theory of gases.
At the same time, it is not so trivial to relate these mi-
croparameters with the macroparameters measured in
practice such as the pressure, the temperature, and the
viscosity. Some papers contradict others regarding this
question.

~3! The theoretical works are performed under suppositions
idealizing the problem: the capillary has an infinite
length, the gas is single, and the gaseous molecules are
monatomic. In practice one deals with a capillary of fi-
nite length and with a gaseous mixture of polyatomic
gases. Without special knowledge one does not know if
the theoretical results obtained under ideal assumptions
can be applied in some practical situations.

The present article provides numerical data and analytical
formulas on the mass flow rate and on the heat flux through
a capillary. It should be noted that the rarefied gas flows are
complicated by the so-called cross effects, viz. the mass flow
caused by temperature gradient and the heat flux caused by
pressure gradient. These cross effects are described in this
article.

The entire range of the main parameters determining the
gas flow is considered. The capillary length varies from in-
finity when the end effects can be neglected to zero when the
capillary degenerates into a thin slit or orifice. The pressure
and temperature drops on the capillary ends are also assumed
to be arbitrary. The drops vary from small values when the
linear theory is valid to large values when the nonlinear
equations must be applied. The principal parameter, which
affects the gas flows, is the gas rarefaction. In the article, the
entire range of this parameter is covered, from the regime
when the intermolecular collisions can be discounted to the
hydrodynamic regime.

Besides the flow rates and the heat fluxes, one more prac-
tically important phenomenon is described, namely, the ef-
fect of the thermomolecular pressure difference. This effect
can serve for indirect pressure measurements and for mea-
surements of the gas–surface interaction parameters.

The contents of this article are as follows: In the present
section, the general statement of the problem is described.
The main assumptions outlining the sphere of the applicabil-
ity of the data presented in the review are given.

In Sec. 2 the main theoretical conceptions of the RGD are
described. The relations between the microparameters~mo-
lecular mean free path, molecular mass, molecular diameter!
with the macroparameters~pressure, temperature, number
density, viscosity, thermal conductivity! are given. The engi-
neers, who need to calculate the mass flow rates in some
equipments, and the experimenters, who need to choose the

best conditions for indirect measurements of the gas–surface
interaction parameters or to confirm some theoretical conclu-
sions, can easily relate the data presented here with practi-
cally measured quantities. Numerical methods applied to cal-
culate the rarefied gas flows are described briefly in this
section. For the reader who wants to study one or another
method in depth, the corresponding references are given.

In Sec. 3 the gas flow through long capillaries is consid-
ered. In this limit the end effects can be neglected. Moreover,
the solution to the problem can be split into two stages. First,
we calculate the flow rates through a given cross section of
the capillary under the small gradients of the pressure and
temperature. In the second stage we use an approach elabo-
rated recently to calculate the flow rates as a function of the
pressures and the temperatures on the capillary ends without
any restrictions on their drops.

In Sec. 4 the other limit case is considered, viz. the capil-
lary with a zero length. This means that the containers are
separated by a thin partition having a slit or an orifice.

In Sec. 5 the intermediate values of the capillary length are
regarded.

From the last two sections one concludes that information
on these types of rarefied gas flows is very poor and there is
a need for more research in this scientific field.

1.2. General Statement of the Problem

Consider two reservoirs containing the same gas and
joined by a capillary of a lengthl as is shown in Fig. 1. Let
PI andTI be the pressure and the temperature, respectively,
of the gas in the left container;PII and TII are the pressure
and the temperature, respectively, in the right container.
There is a temperature distributionTw(x) on the capillary
wall. This distribution can exist independently of the tem-
peraturesTI andTII . However we will not consider this spe-
cific situation and assume that

FIG. 1. Sketch of the gas flow through a capillary of arbitrary length.

661661INTERNAL RAREFIED GAS FLOWS

J. Phys. Chem. Ref. Data, Vol. 27, No. 3, 1998



Tw~x!5TI1~TII2TI!tw~x!, ~1.1!

wheretw(x) is some given function satisfying the conditions

tw~2 l /2!50, tw~ l /2!51.

Therefore, ifTI5TII thenTw(x)5TI5const.
It is obvious that the pressure and temperature drops

DP5~PII2PI!, DT5~TII2TI! ~1.2!

cause the fluxes of the mass and heat through the capillary.
The flow rate and the heat flux are defined as

Ṁ5
DM

Dt
, Ė5

DE

Dt
, ~1.3!

respectively. Here,DM and DE are quantities of mass and
heat, respectively, flowing through a cross section of the cap-
illary per a time intervalDt.

In rarefied gases the flow rate and the heat flux depend on
the drops of both pressure and temperature, i.e.,

Ṁ5Ṁ ~DP,DT!, Ė5Ė~DP,DT!. ~1.4!

This means that the mass flow can be caused not only by the
pressure drop but also by the temperature drop, and the heat
flux is caused not only by the temperature drop but also by
the pressure drop.

This fact leads to an interesting phenomenon, the so-called
thermomolecular pressure difference~TPD!. If we assume
that the system (the capillary1the reservoirs) is closed, the
pressuresPI , PII are equal each to other but the temperatures
TI , TII are maintained different, then a gas begins to flow
from the cold container to the hot one. This will cause a
pressure difference between the reservoirs, and the mass flow
in the opposite direction appears. When the whole mass flow
rate through the capillary is zero the stationary state will be
established. The established pressure ratioPI /PII in this state
can be related to the maintained temperature ratio as

PI

PII
5S TI

TII
D g

, ~1.5!

whereg is the exponent of the TPD, which can be related to
the mass flow rate.

1.3. Main Assumptions

We restrict ourselves by the following assumptions:

~i! The volume of the reservoirs are significantly larger
than the volume of the capillary, so that the gas in the
containers is in equilibrium far away from the capil-
lary entrances. This assumption allows us to discount
the form and size of the reservoirs.

~ii ! The flow regime is stable, not turbulent. The criterion
of the stability of the gas flow is the Reynolds num-
ber. The data on the critical Reynolds number can be
found in many books on hydrodynamics, see e.g.,
Landau and Lifshitz,73 Chapter III.

~iii ! The molecular mean free path is significantly larger

than the molecular diameter. This assumption allows
us to consider only binary intermolecular collisions
and to apply the Boltzmann equation. The molecular
diameter is of the order 10210 m, while the mean free
path under normal conditions~the pressure is 1 atm
and the temperature is 0 °C! is about 1028 m. This
assumption is violated if the pressure exceeds 10 atm.

~iv! The gas molecules are monatomic. This assumption
allows us to neglect the internal degrees of freedom
and to simplify the kinetic equation. In practice, usu-
ally one deals with polyatomic gases and hence, the
natural question arises: are the results obtained for
monatomic gases applicable to polyatomic ones? If
the reply is negative, this article would be totally
meaningless. The question on the applicability must
be considered in every special case: some results are
applicable, while others are not. At the end of every
section, recommendations on the applicability of re-
sults to polyatomic gases are given.

~v! The gas is a single pure species. This assumption also
allows us to simplify the kinetic equation. Since in
practice gaseous mixtures are met more frequently
than a single gas, the same question arises: are the
results obtained for a single gas applicable to a gas-
eous mixture. This question will be discussed at the
end of Sec. 2.13.

1.4. Types of Capillaries

We will consider two types of capillaries: the capillary
with the round cross section will be called ‘‘tube,’’ and the
capillary with the rectangular cross section will be called
‘‘channel,’’ ~see Fig. 1!. The word ‘‘capillary’’ will be used
to indicate both ‘‘tube’’ and ‘‘channel.’’ We denote the cap-
illary length by l , the tube radius and the channel height by
a. The channel width is denoted byb.

FIG. 2. Sketch of the gas flow through an orifice and slit.
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In the particular casel 50, i.e., the containers are divided
only by an infinitesimally thin partition as is shown in Fig. 2,
the capillary will be called the ‘‘orifice’’ instead of the
‘‘tube’’ and the ‘‘slit’’ instead of the ‘‘channel.’’

1.5. Mass Flow Rate and Heat Flux

1.5.1. Channel

The mass flow rate and the heat flux through a channel of
finite width b are calculated as

Ṁ ch,b5E
2b/2

b/2 E
2a/2

a/2

r~r !ux~r !dydz, ~1.6!

Ėch,b~x!5E
2b/2

b/2 E
2a/2

a/2

qx~r !dydz, ~1.7!

respectively. Here,r5(x,y,z) is the position vector,r(r ) is
the local mass density of the gas,ux(r ) is thex component of
the hydrodynamic~bulk! velocity of the gas, andqx(r ) is x
component of the heat flow vector in the gas. The coordi-
natesx,y,z are depicted in Fig. 1. Note that the mass flow
rate does not depend on thex coordinate because of the mass
impenetrability of the capillary walls. Since there are no heat
impenetrable walls, the heat flux through a cross section of
the capillary generally depends on thex coordinate.

In theoretical calculations, it is usually assumed that the
width b is essentially larger than the heighta and the flow
field has the translational invariance in thez direction. In this
case the flow rate and the heat flux are defined per unity of
the width, i.e., as limits

Ṁ ch5 lim
b→`

S 1

b
Ṁ ch,bD5E

2a/2

a/2

r~x,y!ux~x,y!dy, ~1.8!

Ėch~x!5 lim
b→`

S 1

b
Ėch,bD5E

2a/2

a/2

qx~x,y!dy. ~1.9!

Further, we will use these definitions of the mass flow rate
~1.8! and of the heat flux~1.9! through a channel.

1.5.2. Tube

The flow rate and the heat flux through a tube are calcu-
lated as

Ṁ tb52pE
0

a

r~x,r'!ux~x,r'!r'dr' , ~1.10!

Ėtb~x!52pE
0

a

qx~x,r'!r'dr' , ~1.11!

wherer'5Ay21z2. The coordinates are depicted in Fig. 1.

1.6. Main Variables

In this article the mass flow rateṀ and the heat fluxĖ are
treated as functions of the following variables:

~i! The drops of the pressureDP and temperatureDT.
We also will use the ratios of the pressurePI /PII and
of the temperatureTI /TII .

~ii ! The rarefaction parameter of the gas, which is in-
versely proportional to the Knudsen number. Their
definitions are given in Sec. 2.1.

~iii ! The dimensionless capillary lengthL5 l /a.
~iv! The parameters of the gas–surface interaction. All

data presented here were obtained under the supposi-
tion of the diffuse-specular scattering of the gas mol-
ecules on the surface. This scattering law has a unique
parameter, which is introduced in Sec. 2.3.

2. Basic Conceptions of Rarefied Gas
Dynamics

2.1. Knudsen Number and Rarefaction Parameter

The principal parameter of the RGD is the Knudsen num-
ber, Kn, which characterizes the gas rarefaction. The Knud-
sen number is defined as the ratio

Kn5
l

a
, ~2.1!

where l is the molecular mean free path, i.e., the average
distance traveled by a molecule between collisions, anda is
the characteristic scale of the gas flow. For the problem in
questiona is the radius of the tube or the height of the
channel.

Regarding the value of the Knudsen number, we may dis-
tinguish three regimes of the gas flow. If the Knudsen num-
ber is very small (Kn!1), the mean free path is so small
that the gas can be considered as a continuous medium and
the hydrodynamic equations can be applied to the gas flow.
That is why the regime is calledhydrodynamic.

If the Knudsen number is very large (Kn@1), the mean
free path is so large that the collisions of molecules with the
capillary walls occur much more frequently than the colli-
sions between molecules. Under this condition we may dis-
count the intermolecular collisions and consider that every
molecule moves independently of each other. This is the so-
called free-molecularregime.

When the Knudsen number has some intermediate value
we cannot consider the gas as a continuous medium. At the
same time we cannot discount the intermolecular collisions.
This regime is calledtransition.

This division of the regimes of flow is very important
because the methods used for calculation of the gas flows
essentially depend on the regime.

Usually another quantity characterizing the gas rarefaction
is used instead of the Knudsen number, viz. the rarefaction
parameter, defined as

d5
Ap

2

a

l
5

Ap

2

1

Kn
. ~2.2!
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Large values ofd correspond to the hydrodynamic regime
and small values ofd appropriate to the free molecular re-
gime.

To calculate the Knudsen Kn number or the rarefaction
parameterd one needs to know the microparameter, such as
the mean free pathl, which cannot be measured. If one tries
to calculatel directly, one finds that it depends on the mo-
lecular velocity and the molecular size. So, to obtain the
mean free path one needs knowledge of other nonmeasurable
quantities. Another manner to obtain the mean free path is to
use its relations with the transport coefficients provided by
the kinetic theory of gases. It has become customary to cal-
culatel via the viscosity coefficientm as

l5
Apm

2P S 2kBT

m D 1/2

, ~2.3!

whereP is the pressure,T is the temperature,m is the mo-
lecular mass, andkB51.380658310223 J/K is the Boltz-
mann constant. This definition has the advantage that it con-
tains the easily measurable quantities (P,T) and the
quantities (m,m) which can be found in Refs. 19 and 69 or
in handbooks on Physics and Chemistry. Moreover the defi-
nition ~2.3! allows us an easier comparison between results
referring to different molecular models. In Sec. 2.4.2 the ori-
gin of the relation~2.3! will be described.

The mean free pathl can be also calculated via the ther-
mal conductivity. This method gives slightly different values
of l. To avoid further confusion the mean free path at some
given pressureP and at some given temperatureT will be
defined by the relation~2.3! only.

2.2. Boltzmann Equation

The state of a monatomic gas is described by the one-
particle velocity distribution functionf (t,r ,v), wheret is the
time, r is a vector of spatial coordinates, andv is a velocity
of molecules. The distribution function is defined so as the
quantity f (t,r ,v)drdv is the number of particles in the phase
volume drdv near the point (r ,v) at the timet.

All macrocharacteristics of the gas flow can be calculated
via the distribution function:

number density

n~ t,r !5E f ~ t,r ,v!dv, ~2.4!

hydrodynamic~bulk! velocity

u~ t,r !5
1

n E v f ~ t,r ,v!dv, ~2.5!

pressure

P~ t,r !5
m

3 E V2 f ~ t,r ,v!dv, ~2.6!

stress tensor

Pi j ~ t,r !5mE ViVj f ~ t,r ,v!dv, ~2.7!

temperature

T~ t,r !5
m

3nkB
E V2 f ~ t,r ,v!dv, ~2.8!

heat flow vector

q~ t,r !5
m

2 E V2V f ~ t,r ,v!dv, ~2.9!

whereV is the peculiar velocity

V5v2u. ~2.10!

With help of ~2.4!, ~2.6! and ~2.8! the state equation is
derived

P~r !5n~r !kBT~r !. ~2.11!

Note that Eq.~2.11! is valid for any nonequilibrium state of
the gas, while Pascal’s law is valid only in equilibrium. In a
nonequilibrium state the pressure defined by~2.6! is the av-
erage value over all directions. Further we will pass from the
variables (n,T) to (P,T) and vice versa implying the rela-
tion ~2.11!.

The distribution function obeys the Boltzmann equation
~BE!,25–27,30,39,57,71which in the absence of external forces
reads as

] f

]t
1v•

] f

]r
5Q~ f f * !, ~2.12!

whereQ( f f * ) is the collision integral

Q~ f f * !5E w~v,v* ;v8 ,v
*
8 !~ f 8 f

*
8 2 f f * !dv8dv

*
8 dv* .

~2.13!

Here, the affixes tof correspond to those of their arguments
v: f 85 f (t,r ,v8), f * 5 f (t,r ,v* ). The quantity
w(v,v* ;v8,v

*
8 ) is the probability density that two molecules

having the velocitiesv8 andv
*
8 will have the velocitiesv and

v* , respectively, after a binary collision between them.
The functionw satisfies the two general relations:76 the

reciprocity property

w~v,v* ;v8,v
*
8 !5w~2v8,2v

*
8 ;2v,2v* !, ~2.14!

and the unitary property

E w~v,v* ;v8,v
*
8 !dvdv* 5E w~v8,v

*
8 ;v,v* !dvdv* .

~2.15!

Applying these relations the following inequality is easily
proved, see Cercignani26 ~Chap.II Sec. 7!, Ferziger and
Kaper57 ~Sec. 4.2!, Lifshitz and Pitaevskii76 ~Sec. 4!

E Q~ f f * !ln f dv<0. ~2.16!

Moreover, the collision integral obeys the rules
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E c~v!Q~ f f * !dv50, c~v!51, mv,
mv2

2
,

~2.17!

that follows from the conservation of the particles, momen-
tum and energy in every collision.

2.3. Gas–Surface Interaction

On the boundary surface we need to relate the distribution
function of incident particlesf 2 and the distribution function
of molecules leaving the wallf 1. The relation can be written
in a general form as, see Cercignani26 ~Chap. III!, Cercignani
et al.30 ~Chap. 8!

f 1~r ,v!5
H~vn!

uvnu E H~2vn8!uvn8uR~r ,v8→v!

3 f 2~r ,v8!dv8, ~2.18!

whereH(x) is the Heaviside step function defined as

H~x!5 H1 for x.0,
0 for x,0, ~2.19!

vn5v•n is a normal velocity component,n is the unit vector
normal to the surface~see Fig. 3!. R(r ,v8→v) is a scattering
kernel satisfying the normalization condition

E H~vn!R~r ,v8→v!dv51. ~2.20!

Another obvious property of the kernel is that it cannot as-
sume a negative value

R~r ,v8→v!>0.

If the surface is staying in local equilibrium at a tempera-
ture Tw , the kernel satisfies the reciprocity property, see
Cercignani26 ~Chap III, Sec. 3!

H~2vn8!uvn8uexpS 2
mv82

2kBTw
DR~r ,v8→v!

5H~vn!uvnuexpS 2
mv2

2kBTw
DR~r ,2v→2v8!. ~2.21!

The most known model of the gas–surface interaction is
the diffuse scattering having the following kernel

R~v8→v!5
m2vn

2p~kBTw!2 expS 2
m v2

2kBTw
D , ~2.22!

whereTw is the surface temperature. Physically this means
that a particle coming to the surface ‘‘forgets’’ all informa-
tion on its state before the interaction with the surface. Then,
it leaves the surface with the Maxwellian distribution func-
tion. That is why the diffuse scattering is also called the
perfect accommodation.

Calculations of rarefied gas flows based on the diffuse
scattering sometimes give an understated flow rate instead of
experimental results. To eliminate this discrepancy
Maxwell107 generalized the model~2.22! and considered that
only a part of molecules is reflected diffusely but the reflec-
tion of the rest part (12a) is specular. Maxwell’s kernel
reads as

R~v8→v!5~12a!d~v82v12nvn!

1a
m2vn

2p~kBTw!2 expS 2
mv2

2kBTw
D .

~2.23!

This model is widely used but it contradicts some experi-
mental results on the TPD effect~see Sec. 5.2.5!. That is why
some other models were proposed. One of them is the Cer-
cignani and Lampis31 model, which reads as

R~v8→v!5
m2vn

2pana t~22a t!~kBTw!2

3expH 2
m@vn

21~12an!vn8
2#

2kBTwan
2

1

a t~22a t!

3
m@v t2~12a t!v t8#2

2kBTw
J J0S A12anmvnvn8

ankBTw
D ,

~0<a t<2; 0<an<1!, ~2.24!

wherev t is the tangential component of the molecular veloc-
ity, J0 denotes the modified Bessel function of the first kind
and zero order defined as

J0~x!5~2p!21E
0

2p

exp~x cosf!df, ~2.25!

an has the physical sense of the accommodation coefficient
for the part of the kinetic energy corresponding to the motion
normal to the wall, anda t is the accommodation coefficient
of the tangential momentum.

The definition of the accommodation coefficients will be
given in Sec. 2.9.

2.4. Analytical Solutions of the Boltzmann
Equation

Generally speaking if one solves the BE~2.12! with the
boundary conditions~2.18!, one knows the distribution func-
tion f (t,r ,v). Then, one can calculate all moments~2.4!–
~2.9! and finally one finds the flow rateṀ and the heat flux
Ė. However the complexity of the BE does not allow us to
perform this task in general. Recently, using powerful com-
puters it became possible to solve numerically the BE only in

FIG. 3. The velocities of incident (v8) and reflected (v) molecules.
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some simple cases. That is why a number of approximate
methods of solution of the BE were elaborated. Here, we will
consider the main ones.

2.4.1. Moment Method

The moments of the distribution function are defined as

Ma1 . . . aN

~N! ~ t,r !5E va1
. . . vaN

f ~ t,r ,v!dv,

ab51, 2, 3, b51 . . .N ~2.26!

Ma1 . . . aN

~N! ~ t,r !5E Va1
. . . VaN

f ~ t,r ,v!dv,

ab51, 2, 3 b51 . . .N. ~2.27!

The M moments of the orderN may be related with ofM
moments of the orderN and lower, and vice versa.

The macrocharacteristics of the gas may be expressed in
terms of these moments

n~ t,r !5M ~0!, nui~ t,r !5Mi
~1! , Pi j ~ t,r !5mM i j

~2! ,

qi5
m

2
~M i11

~3!1M i22
~3!1M i33

~3!!. ~2.28!

The main idea of the method offered by Grad60 is to repre-
sent the distribution function in the form of series

f ~ t,r ,v!5 f loc
M S a~0!H ~0!1aa1

~1!Ha1

~1!1 . . .

1
1

N!
aa1 . . . aN

~N! Ha1 . . . aN

~N! 1 . . . D , ~2.29!

where f loc
M is the local Maxwellian defined as

f loc
M ~n,T,u!5n~ t,r !F m

2pkBT~ t,r !G
3/2

3expH 2
m@v2u~ t,r !#2

2kBT~ t,r ! J . ~2.30!

Ha1 . . . aN

(N) (V1 ,V2 ,V3) are Hermite polynomials in the three

independent variables determined by the relation

Ha1 . . . aN

~N! ~V1 ,V2 ,V3!

5~21!NS kBT

m D N/2

expS mV2

2kBTD
3

]N

]Va1
. . . ]VaN

expS 2
mV2

2kBTD . ~2.31!

Using the orthogonality of the Hermite polynomials, we find

aa1 . . . aN

~N! ~ t,r !5
1

n E f ~ t,r,v !Ha1 . . . aN

~N! dv. ~2.32!

The coefficientsa(N) may be expressed in terms of the mo-
ments

a~0!51, ai
~1!50, ai j

~2!5
mM i j

~2!

P
2d i j ,

ai jk
~3!5

mM i jk
~3!

P
A m

kBT
. ~2.33!

If we multiply both sides of the BE~2.12! by H (N) and
integrate over the whole velocity spacev, we obtain

E H ~N!S ] f

]t
1v•

] f

]r Ddv5E H ~N!Q~ f f * !dv. ~2.34!

Then, substituting~2.29! into the collision integralQ( f f * )
in ~2.34! we obtain the system of differential equations for an
infinite set of the coefficientsa(N). The left hand side of Eq.
~2.34! is expressed as a linear combination of the derivatives
of a(N) with respect to the time and the spatial coordinates.
This part of the equation contains the moments of order up to
(N11). The right hand side of Eq.~2.34! is expressed as a
linear combination of double products ofa(N). This part of
the equation contains an infinite number of the coefficients
a(N).

It is clear that to solve this system of equations we must
retain only a finite number of the moments. If we retainN
equations, the last one will contain the moment of the
N11 order. To close the system this moment must be related
to the moments of the order lower thanN11. The relation is
based on a physical rationale.

The boundary conditions can be derived by the same
method. We multiply both sides of~2.18! by the functions
Ha1 . . . aN

(N) and integrate with respect tov, substituting the

approximating functions~2.29! for f ~v! and f ~v8!. As a re-
sults of these derivations we obtain a relation between the
moments on the boundary.

One can see that this method assumes the distribution
function to be continuous in the velocity variables, but it is
approximately true only at the small Knudsen numbers.
Thus, the method gives good results only near the hydrody-
namic regime.

Details of the method are given in the literature.10,26,27,71

2.4.2. Chapman–Enskog Method

The distribution function can be expanded into the power
series with respect to the small parameter such as the Knud-
sen number

f 5 f ~0!1Kn f ~1!1Kn2 f ~2!1 . . . . ~2.35!

The Chapman–Enskog method assumes that the distribution
function depends on the time and the coordinates only via
the five moments being the parameters of the local Maxwell-
ian: the number densityn(t,r ), the three components of the
bulk velocity u(t,r ), and the temperatureT(t,r ). Substitut-
ing ~2.35! into the BE ~2.12! and taking into account the
assumption mentioned above, we find thatf (0) is the local
Maxwellian f loc

M defined by~2.30!. The next approximation
f (n) is expressed via the previous onef (n21).
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On the basis of the first approximationf (1) we obtain
Newton’s law

Pi j 5Pd i j 22 m Si j , ~2.36!

and Fourier’s law

q52k¹T, ~2.37!

whereSi j is the rate of shear tensor

Si j 5
1

2 S ]ui

]xj
1

]uj

]xi
D2

d i j

3
¹•u, ~2.38!

k is the thermal conductivity. The explicit expressions of the
transport coefficientsm andk can be obtained if the intermo-
lecular interaction law is given. For the hard sphere mol-
ecules the coefficients have the form

m5
5

16

ApmkBT

pd2 , k5
75kB

64m

ApmkBT

pd2 , ~2.39!

whered is the molecular diameter. Taking into account that
the molecular mean free pathl is given by

l5
1

&npd2
, ~2.40!

see Bird10 ~Sec. 1.4!, Ferziger and Kaper57 ~Sec. 2.4!, expres-
sions~2.39! turn into

m5
5p

32
^v&mnl.

1

2
^v&mnl,

k5
75pkB

128
^v&nl.

15kB

8
^v&nl, ~2.41!

where^v& is the mean thermal velocity

^v&5S 8kBT

pm D 1/2

. ~2.42!

Namely the expression~2.41! for m has been used in~2.3! to
relate the mean free path with the macroparameters. From
~2.41! it is easily obtained the relation between the viscosity
m and the thermal conductivityk

k5
15kB

4m
m. ~2.43!

With the help of Newton’s law~2.36! the equation of the
momentum balance gives us the Navier–Stokes equation

r
dui

dt
52

dP

dxi
12m(

j 51

3
]Si j

]xj
. ~2.44!

The Chapman–Enskog method is based on the expansion
~2.35! with respect to the small Knudsen numbers. So, like
the moment method, the Chapman–Enskog method also is
applicable only for the small Knudsen numbers. Usually, it is
used to obtain the explicit expressions of the transport coef-
ficients in the hydrodynamic equations.

Details of the method are given in the litera-
ture.10,26,27,39,57,71

2.5. Model Kinetic Equations

The Grad and Chapman–Enskog methods are applied near
the hydrodynamic regime. To describe gas flows at an arbi-
trary rarefaction, it is necessary to develop another approach
to the solution of the BE. The main idea of the method suit-
able at any Knudsen number is to simplify the collision in-
tegral retaining its fundamental properties such as~2.16! and
~2.17!. Then, one may apply some exact method of solution
to these approximate equations. The simplified equations are
called the model kinetic equations.

2.5.1. BGK Equation

An early model equation was proposed by Bhatnagar,
Gross and Krook9 ~BGK! and independently by Welander.165

They presented the collision integral as

QBGK~ f f * !5n@ f loc
M ~n,T,u!2 f ~ t,r ,v!#, ~2.45!

wheref loc
M is the local Maxwellian~2.30!. The local values of

the number densityn(t,r ), bulk velocityu(t,r ) and tempera-
ture T(t,r ) are calculated via the distribution function
f (t,r ,v) in accordance with the definitions~2.4!, ~2.5! and
~2.8!, respectively. The quantityn is the collision frequency,
which is assumed to be independent of the molecular veloc-
ity. One can verify that the model collision integral obeys
both fundamental properties~2.16! and ~2.17!.

The collision frequencyn can be chosen by various meth-
ods. One of them is to choosen so that by solving the model
equation by the Chapman–Enskog method the expression of
the viscositym would be the same as given in the full colli-
sion integral. Regarding this we obtain

n~ t,r !5
P~ t,r !

m~T!
. ~2.46!

Note that n is a local quantity, because the pressure is a
function of t andr and the viscositym also depends ont and
r via the temperatureT.

Another way to choosen is as follows:

n~ t,r !5
5kB

2m

P~ t,r !

k~ t,r !
5

2

3

P~ t,r !

m~T!
, ~2.47!

where relation~2.43! has been used. Solving the BGK equa-
tion with this n, one obtains the correct expression of the
heat conductivityk.

A third way to choosen is to put the frequency as the ratio
of the mean thermal velocity~2.42! to the mean free path,
i.e.,

n5
^v&
l

5
4

p

P~ t,r !

m~T!
, ~2.48!

where Eqs.~2.3! and ~2.42! have been used. This follows
from the fact that the mean time between two successive
collisions is equal to 1/n and on the other hand it is equal to
l/^v&. It would seem that this choice of frequency is physi-
cally justified. But mathematically it gives the correct ex-
pression neither for the viscositym nor for the thermal con-
ductivity k.
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A shortcoming of this model equation is that the correct
expressions for the viscosity and heat conductivity cannot be
proved simultaneously. As a result, the Prandtl number that
the BGK model gives is unity instead of the correct value of
2/3. To avoid this shortcoming some modifications were of-
fered.

One modification of this model was introduced by
Krook.72 He assumed that the frequencyn depends on the
molecular velocityv, because a computation of the collision
frequency for physical models~rigid spheres, finite range
potentials! shows thatn varies with the molecular velocity.
All basic properties are retained, but to satisfy~2.17! the
moments appearing in the local Maxwellian of the modified
model are not the local density, velocity and temperature of
the gas, but some other local parameters.

2.5.2. S-Model

The S model proposed by Shakhov130 is also a modifica-
tion of the BGK model giving the correct Prandtl number.
The collision integral of this model is written down as

QS~ f f * !5
P

m H f loc
M F11

2m

15n~kBT!2 q–VS mV2

2kBT
2

5

2D G
2 f ~ t,r ,v!J . ~2.49!

This model has another shortcoming: the inequality~2.16!
can be proved only for the linearized S model. In the non-
linear form one can neither prove nor disprove the inequal-
ity. But the conservation laws~2.17! are valid for the S
model in any form.

2.5.3. Ellipsoidal Model

Another model37,65 with the correct Prandtl number has
the collision integral in the following form

QEl~ f f * !5nH n

p3/2~det A!1/2

3expF2 (
i , j 51

3

Ai j ~v i2ui !~v j2uj !G2 f J ,

~2.50!

where

A5iAi j i5 I 2kBT

m Pr
d i j 2

2~12Pr!Pi j

nm Pr I21

,

where Pr is the Prandtl number. If we let Pr51, we recover
the BGK model. It is also impossible to prove the inequality
~2.16! for this model.

2.5.4. Applicability of the Model Equations

Conclusions on the applicability of the model equations
can be made from a comparison of numerical data based on
them with those obtained from the exact BE. In Sec. 3 this
comparison is carefully performed on the basis of the sim-

plest internal gas flow, viz. the flow between two parallel
plates. From this comparison the following anticipated rec-
ommendations can be given:~i! any isothermal gas flow can
be successfully calculated with the help of the BGK model;
~ii ! the S model is an ideal equation to describe the linear
nonisothermal gas flows;~iii ! the ellipsoidal model is not
recommended for practical calculations.

2.6. Linearized Boltzmann Equation

2.6.1. Linearization Near the Absolute Maxwellian

If the state of the gas is weakly nonequilibrium, we may
linearize the BE by the standard manner. The distribution
function can be presented as

f ~ t,r ,v !5 f 0
M@11h~ t,r ,v!#, uhu!1, ~2.51!

where f 0
M is the absolute Maxwellian with the equilibrium

number densityn0 and the equilibrium temperatureT0

f 0
M5n0S m

2pkBT0
D 3/2

expS 2
mv2

2kBT0
D . ~2.52!

Substituting ~2.51! into ~2.12! the linearized BE is easily
derived

]h

]t
1D̂h2L̂h50. ~2.53!

The operatorsD̂ and L̂ are defined as

D̂h5v–
]h

]r
, ~2.54!

L̂h5E f 0
M~v* !w~v,v* ;v8,v

*
8 !

3~h81h
*
8 2h2h* !dv* dv

*
8 dv8. ~2.55!

Let us introduce the operator of the time reversal

T̂w~r,v !5w~r ,2v! ~2.56!

and two scalar products

~w,c!5E f 0
Mw~r ,v!c~r ,v!dv, ~~w,c!!5E

V
~w,c!dr ,

~2.57!

where V is the region of the gas flow. Using~2.14! and
~2.15! the following relations can be proved

~ T̂L̂w,c!5~ T̂L̂c,w!, ~2.58!

~~ T̂L̂w,c!!5~~ T̂L̂c,w!!. ~2.59!

The moments of the distribution function can be expressed
via the perturbation functionh and the scalar product~2.57!
as

n5n01~1,h!, T5T01
m

3kBn0
~v2,h!2

T0

n0
~1,h!,

~2.60!
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u5
1

n0
~v,h!, q5

m

2
~v2v,h!2

5

2
kBT0~v,h!.

~2.61!

2.6.2. Linearization Near the Local Maxwellian

In some cases it is more convenient to linearize near the
local Maxwellian, i.e., to represent the distribution function
as

f ~ t,r ,v!5 f loc
M ~n,T,0!@11h~ t,r,v !#, ~2.62!

where f loc
M is defined by~2.30!. Here, the momentsn(t,r )

andT(t,r ) may depend on the coordinates. If we substitute
~2.62! into the BE~2.12! we obtain

]h

]t
1D̂h2L̂h52v–F1

n

]n

]r
1S mv2

2kBT
2

3

2D 1

T

]T

]r G .
~2.63!

One can see that in the casen(t,r )5n0 andT(t,r )5T0 the
last equation takes the form~2.53!.

2.7. Linearized Model Equations

In the case of the weak nonequilibrium the local Maxwell-
ian ~2.30! can be related to the absolute Maxwellian~2.52! as

f loc
M ~n,T,u!5 f 0

MF11%1
m

kBT0
v–u1tS mv2

2kBT0
2

3

2D G ,
~2.64!

where

%5
n2n0

n0
, t5

T2T0

T0
. ~2.65!

Equation~2.64! is valid if

u%u!1,UA m

kBT0
uU!1, utu!1.

Substituting~2.51! and ~2.64! into ~2.45! we obtain

QBGK~ f f * !5n f 0
MF%1

m

kBT0
v–u1tS mv2

2kBT0
2

3

2D2hG .
~2.66!

Then, the linearized collision operator takes the form

L̂BGKh5n0F%1
m

kBT0
v–u1tS mv2

2kBT0
2

3

2D2hG .
~2.67!

Note that here the frequencyn has its value in the equilib-
rium state, because the consideration of its variation gives us
the terms of the second order of the smallness, which are
negligible.

The analogous procedure with the S model~2.49! gives us
the following collision operator

L̂Sh5
P0

m0
F%1

m

kBT0
v–u1tS mv2

2kBT0
2

3

2D
1

2m

15n0~kBT0!2 q–vS mv2

2kBT0
2

5

2D2hG ,
~2.68!

whereP05n0kBT0 andm05m(T0).

2.8. Linearized Boundary Conditions

The linearized boundary conditions are easily obtained
substituting ~2.51! into ~2.18! combining with ~2.20! and
~2.21!

h15Âh21hw
12Âhw

2 , hw5
Tw2T0

T0
S mv2

2kBT0
2

5

2D .

~2.69!
The upper indexes ‘‘1’’ and ‘‘ 2’’ in ~2.69! mean the per-
turbation function of the reflected and incident molecules,
respectively. The scattering operatorÂ is defined as

Âh25
H~vn!

uvnuexp@2mv2/~2kBT0!#
E H~2vn8!uvn8u

3expS 2
mv82

2kBT0
Dh~v8!R~v8→v!dv8. ~2.70!

Let us introduce one more scalar product

~w,c!B5E H~vn!vnf 0
M w~r ,v!c~r ,v!dv, rP]V,

~2.71!

where]V is the surface bounding the gas flow.
Using the normalization~2.20! and the reciprocity of the

scattering kernel~2.21! one obtains the following relation26

~ T̂w2,Âc2!B5~ T̂c2,Âw2!B . ~2.72!

2.9. Accommodation Coefficients

In some cases it is not necessary to know the scattering
kernel, it is enough to know only its integral characteristics
such as the accommodation coefficientsa(w). For a surface
having a temperatureT0 the accommodation coefficient is
defined as

a~w!5
*H~2vn!w~v!uvnu f dv2*H~vn!w~v!uvnu f dv

*H~2vn!w~v!uvnu f dv2*H~vn!w~v!uvnu f 0
Mdv

,

~2.73!

where f 0
M is defined by~2.52!, andw(v) is some function of

the molecular velocity. One can see that the accommodation
coefficienta(w) defined by~2.73! depends on the distribu-
tion function of the impinging molecules. Restricting this
distribution function we obtain a more meaningful definition.
If we representf as

f 5 f 0
M~11T̂c!, ~2.74!
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then Eq.~2.73! can be written as

a~w,c!512
~w1,T̂c2!B

~ T̂w2,c1!B

512
~Âw2,T̂c2!B

~ T̂w2,c1!B

512
~Âc2,T̂w2!B

~ T̂w2,c1!B

, ~2.75!

where Eq.~2.72! has been used.
It is easily verified that in Maxwell’s kernel~2.23! a is the

accommodation coefficient of any quantityw for any pertur-
bation functionc.

In the Cercignani–Lampis kernel~2.24! a t is the accom-
modation coefficient of tangential momentum, i.e.,a t

5a(mv t ,c) for any c. The coefficientan is the accommo-
dation coefficient for the part of the kinetic energy corre-
sponding to the motion normal to the wall, i.e.,an

5a(mvn
2 ,c) for anyc. If one tries to compute other accom-

modation coefficients using the Cercignani–Lampis model,
one concludes that they depend on the distribution function
c.

Let us take a set of of physically meaningful quantitiesw i

and letw5w i , c5w j . We obtain a matrix of the accommo-
dation coefficients

a i j 512
~Âw i

2 ,T̂w j
2!B

~ T̂w i
2 ,w j !B

. ~2.76!

With the help of~2.72! one can prove that the matrixa i j is
symmetric. The setw15vn , w25v t1 , w35v t2 and w45v2

leads us to the four accommodation coefficients:109 a11,
a225a33, a44, anda145a41, which are generally used.

The accommodation coefficient of the tangential momen-
tum a22 is most important in the problem of the internal
rarefied gas flow. The accommodation coefficients are usu-
ally measured indirectly, e.g., via the mass flow rate through
a capillary. Data on the coefficients can be found in the
literature.3,7,122,125,126,154From these data one can see that for
light gases, such as helium and neon, the accommodation
coefficients may differ significantly from unity, while for
heavy gases, e.g., krypton, xenon, the coefficients are close
to unity. The gas–surface interaction for a contaminated sur-
face is closer to the diffuse scattering than the interaction
with a surface specially treated. A chemical cleaning of the
surface increases the deviation of the accommodation coef-
ficients from the unity. So, if one deals with a sufficiently
heavy gas and with an ordinarily contaminated surface, one
may assume the perfect accommodation of gas on the sur-
face.

2.10. Onsager’s Reciprocity Relations

If we restrict ourselves by the linear region of physical
laws, all irreversible phenomena can be described in the
quite general form

Jk5(
n

LknXn , ~2.77!

whereXk are independent thermodynamic forces,Jk are con-
jugated thermodynamic fluxes andLkn are kinetic coeffi-
cients. If the set of the fluxes is chosen so as the entropy
production in the system is expressed as the sum

s5(
n

JnXn , ~2.78!

the Onsager theorem118 establishes the following relations
between the kinetic coefficients

Lkn5Lnk . ~2.79!

Casimir21 generalized these relations regarding forces with
a different time parity. However, all thermodynamic forces
considered here have the same time parity, which is why we
retain the reciprocity relations just in the form~2.79!.

Onsager118 proved the relations~2.79! for insulated sys-
tems. De Groot and Mazur51 derived them for systems in
local equilibrium. However, we are going to consider open
systems admitting a heat exchange with the surroundings and
not being in local equilibrium, which is destroyed at a large
rarefaction of the gas. For our purpose the best approach is
based on the BE, which was elaborated by Loyalka,87 by
Boschet al.,159 by Bishaev and Rykov,13–16by Freedlender58

and by Sharipov.132–139,143The explicit expressions for the
thermodynamic fluxes and the kinetic coefficients in the case
of rarefied gas flow through a capillary are given below.

Since the Onsager reciprocity relations are valid for a
weak nonequilibrium state, we assume the relative drops of
the pressure and temperature to be small

UPII2PI

PI
U !1, UTII2TI

TI
U!1. ~2.80!

Further it is reasonable to assume these drops to be thermo-
dynamic forces

XP5
PII2PI

PI
, XT5

TII2TI

TI
. ~2.81!

Moreover, we consider the stationary gas flow.
In Refs. 136–138 it was shown that to satisfy~2.78! the

thermodynamic fluxes must have the following form

JP52nIE
S'

uxdS, ~2.82!

JT52
1

kBTI
S E

S II
qxdS2E

Sw
c
qntwdS D , ~2.83!

where S' is any cross section of the capillary,S II is the
cross section bounding the right container and the capillary,
Sw

c is the lateral surface of the capillary,qn5(q–n) is the
normal of the heat flow vector, where the unit vectorn is
directed into the capillary, andtw is the temperature distri-
bution ~1.1!.
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Because of the smallness of the pressure and temperature
drops the solution of the linearized BE~2.53! or ~2.63! can
be decomposed as

h~r ,v!5hP~r ,v!XP1hT ~r ,v!XT . ~2.84!

Substituting~2.84! into ~2.61! one can see that the moments
of the distribution function are decomposed to

u5uPXP1uT XT , q5qPXP1qT XT . ~2.85!

Substituting~2.85! into ~2.82! and~2.83! and comparing with
~2.77! we obtain the explicit expressions of the kinetic coef-
ficients

LPP52nIE
S'

uxPdS, ~2.86!

LPT52nIE
S'

uxTdS, ~2.87!

LTP52
1

kBTI
S E

S II
qxPdS2E

Sw
c
qnPtwdS D ,

~2.88!

LTT52
1

kBTI
S E

S II
qxTdS2E

Sw
c
qnTtwdS D .

~2.89!

The physical sense of the coefficients is as follows:LPP

describes the Poiseuille flow, i.e., the mass flow rate caused
by the pressure drop,LPT describes the thermal creep, i.e.,
the mass flow rate caused by the temperature drop,LTP cor-
responds to the mechanocaloric heat flux, i.e., the heat flux
caused by the pressure drop, andLTT is the ordinary heat
flux caused by the temperature drop.

Starting from equalities~2.59! and ~2.72! Sharipov136–138

proved the Onsager relation~2.79!, i.e.,LPT5LTP, which is
valid for any gas rarefaction, for any gas–surface interaction
law, and for any temperature distributiontw along the cap-
illary.

De Groot and Mazur51 derived the analogous expressions
assuming that the walls are heat impenetrable. This means
that qn50 at rPSw

c . If we assume the same, the kinetic
coefficients~2.88! and ~2.89! are reduced to

LTP52
1

kBTI
E

S'

qxPdS, LTT52
1

kBTI
E

S'

qxT dS,

~2.90!

coinciding with the expressions by de Groot and Mazur.51

In the case of infinite capillary the kinetic coefficientsLTP

and LTT also take the form~2.90!, because a local equilib-
rium is established in a capillary element and the normal heat
flow vectorqn disappears.

2.11. Methods of Computation in the Free-Molecular
Regime

2.11.1. Clausing’s Equation

If the Knudsen number is very large so that every mol-
ecule moves without any collisions with others, the collision
integral is equal to zero. To obtain the distribution function
in this regime we need only to integrate the left hand side of
the BE ~2.12! taking into account the boundary condition
~2.18!. As a result we obtain the integral equation, which has
the form~2.18! where f 2(r ,v8) is replaced by the Maxwell-
ian

f I
M5

PI

kBTI
S m

2pkBTI
D 3/2

expS 2
mv2

2kBTI
D , ~2.91!

or

f II
M5

PII

kBTII
S m

2pkBTII
D 3/2

expS 2
mv2

2kBTII
D , ~2.92!

if a molecule with the velocityv8 comes to pointr from the
left or right container, respectively.f 2(r ,v8) is replaced by
f 1(r 8,v8) if the molecules comes from pointr 8 being on the
capillary surface~see Fig. 4!. Resolving the derived integral
equation we obtain the distribution function and hence the
flow rate and the heat flux.

In the case of the diffuse-specular scattering~2.23! the
integral equation is simplified and takes the following form

nw~x!5E
2 l /2

l /2

K ~x,x8!nw~x8!dx81S ~x!, ~2.93!

wherenw(x) is number of molecules impinging with the cap-
illary wall per time unit and per area unit in the point with
the longitudinal coordinatex. The functionsK (x,x8) and
S (x) are determined by the capillary form and its dimen-
sionless lengthL. Resolving this integral equation we can
find the flow rate and the heat flux.

The derivation of Clausing’s equation~2.93! can be found
in Cercignani26 ~Chap.V, Sec.8.! and Kogan71 ~Sec. 6.3!.
Methods of solution of integral equations are described in
Sec. 2.12.4.

FIG. 4. Illustration to the derivation of Clausing’s equation.
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2.11.2. Test Particle Monte Carlo Method

The test particle Monte Carlo method10,11 implies a simu-
lation of the motion of a large number of particles. Since
there is no interaction between the molecules we may simu-
late the motion of every particle separately. First, we gener-
ate a particle on the entrance cross section of the capillary
with the Maxwellian distribution of the velocity and the uni-
form distribution over the cross section. Then, we find the
trajectory of the particle and calculate the point of the colli-
sion of this particle with the capillary wall. It may happen
that the particle will pass the capillary without any collision
with the wall. In this case we generate a new particle on the
capillary entrance. If the particle falls on the wall, we simu-
late its scattering according to the gas–surface interaction
law and obtain the post-interaction velocity of the particle.
Then, we find a new point of the interaction with the wall.
The procedure is repeated until the particle goes out the cap-
illary. Then, we generate a new particle on the entrance cross
section.

The particle can go out through the same capillary en-
trance where it has been generated~i.e., the particle has not
passed through the capillary! and through the opposite en-
trance ~i.e., the particle has passed through the capillary!.
Testing a lot of the particles we may calculate the transmis-
sion probability as

W5
Np

N
, ~2.94!

whereNp is the number molecules passed through the cap-
illary and N is the number of the generated particles. The
transmission probability is easily related to the mass flow
rate, see Sec. 5.2.1.

Bird10 has reported a program to calculate the transmission
probabilityW through a tube for the diffuse scattering~2.22!
on the wall.

2.12. Methods of Computation in the Transition
Regime

2.12.1. Discrete Velocity Method

We choose a set of values of the velocityvi and interpo-
late the distribution function in terms of its values corre-
sponding to the velocitiesvi . The collision integral is ex-
pressed via the valuesf i(t,r )5 f (t,r ,vi). Thus, the integro-
differential BE is replaced by a system of differential
equations for the functionsf i(t,r ). The differential equations
can be solved numerically by a finite difference method.
Then, the distribution function moments are calculated using
some quadrature. The method can be optimized147 if we take
into account a solution in the hydrodynamic regime. This
method gives good results in the entire range of the Knudsen
number.

Details of the method are given by Kogan71 ~Sec. 3.13!
and elsewhere.130,140,147

2.12.2. Variational Method

To use the variational method we need a variational prin-
ciple, which can be formulated in the following form. Let us
consider a linear equation written in the quite general form

L̂h5S , ~2.95!

whereL̂ is a some linear operator andS is a source func-
tion. If the linear operatorL̂ is self-adjoint with respect to a
certain scalar product~ , !, i.e., for any functionsw andc we
have

~L̂w,c!5~L̂c,w!, ~2.96!

then the functional

J~ h̃!5~ h̃,L̂h̃!22~S ,h̃! ~2.97!

is easily shown to satisfy

dJ50 ~2.98!

if and only if h̃5h1dh, where h is the solution of Eq.
~2.95! anddh is infinitesimal.

We may represent the functionh̃ in some analytical form
containing some undetermined constantsci . Usually, the
analytical form ~so-called trial functions! is chosen from
some physical reasonings or from the solutions in the hydro-
dynamic regime. Then, the trial function is inserted into the
functionalJ(h̃) andJ becomes a function of the constantci ;
setting equal to zero the partial derivatives of this function
with respect toci , we obtain a system which determines the
best values of theci according to the variational principle.

The advantage of this method is that it requires essentially
less computational effort than a direct numerical method,
e.g., the discrete velocity method, but it gives only an ap-
proximate solution. The precision depends on the choice of
the trial function. The great shortcoming of the method is
that one cannot estimate the error of the variational solution.
That is why the variation solution should be compared with a
direct numerical solution for few Knudsen numbers.

Details of the method are given by Cercignani.26

2.12.3. Integro-Moment Method

Let the gas flow be a steady weak nonequilibrium that is
possible under the small pressure and temperature drops. If
the collision integral is replaced by the BGK model or by the
S model we can reduce the kinetic equation to the system of
integral equations having the following form

Mi~r !5(
j 51

N E
V

K i j ~r ,r 8!M j~r 8!dr 81S i~r !, 1< i<N,

~2.99!

whereMi(r ) is the moments of the distribution function,V
is the region of the gas flow,K i j (r ,r 8) andS i(r ) are some
functions to be defined in every specific problem. In Sec. 3.3
the expressions of these functions are given for the gas flow
through an infinite capillary.

672672 F. SHARIPOV AND V. SELEZNEV

J. Phys. Chem. Ref. Data, Vol. 27, No. 3, 1998



The system~2.99! includes those moments that the model
collision integral contains. If we apply the BGK equation,
the set of the moments is:n(r ), u(r ) and T(r ). In one-
dimensional flows the density and temperature fields are
known and the system~2.99! is reduced to the one equation
containing only longitudinal component of the bulk velocity.
If one applies the S model, the set of the moments is added
by the heat flow vectorq(r ).

A derivation of the integral equations~2.99! can be found
in the literature.4,34,45,71,155

2.12.4. Solution of Integral Equations

The method of solution to the integral equations~2.93!
and ~2.99! will be demonstrated below for the one-
dimensional equation written as

M ~y!5E
a

b

K ~y,y8!M ~y8!dy81S ~y!, ~2.100!

whereK (y,y8) andS (y) are some given functions.
Variational method:The equation~2.100! is a particular

case of Eq.~2.95! with the operator

L̂M5M ~y!2E
a

b

K ~y,y8!M ~y8!dy8. ~2.101!

If we apply a model collision operator satisfying the condi-
tion ~2.59! and the boundary condition satisfying~2.72!, the
operatorL̂ is always self-adjoint with respect to the scalar
product

~w,c!5E
a

b

w~y!c~y!dy. ~2.102!

The variational method assumes the momentM (y) to be
presented as

M ~y!5(
i 51

K

ciw i~y!, ~2.103!

wherew i(y) is a set of basic functions to be chosen from
some physical reasonings, andci are constants to be calcu-
lated. Applying the variational principle described in Sec.
2.12.2. the system of algebraic equations is obtained for
these constants:

(
i 51

K

~L̂w i ,w j !ci5~S ,w j !, 1< j <K. ~2.104!

Thus, if one numerically calculates the matrix (L̂w i ,w j ) and
the vector (S ,w j ) one knows the constantsci and hence the
momentsM (y).

The Bubnov–Galerkin variational method described by
Mikhlin110 and widely applied to the capillary gas flows,
gives the same equation system for the coefficientsci .

Direct numerical method:The integral equation~2.100!
can be solved directly. The interval@a,b# is divided on seg-
ments @yk ,yk11#, where 1<k<K, y15a and yK115b.
Then, the integral equation is replaced by the following sys-
tem of the algebraic equations

M ~yn11/2!5 (
k51

K

M ~yk11/2!E
yk

yk11
K ~yn11/2,y8!dy8

1S ~yn11/2!, ~2.105!

where 1<n<K, yk11/2 is some point betweenyk andyk11 .
Solving this system we find the momentM in the points
yk11/2.

If the order of the algebraic system is large the iterative
method of its solution is applied. Mathematically this means
a numerical construction of the Neumann-Liouville series.

2.12.5. Method of Elementary Solutions

The main idea of the method of elementary solutions is to
separate the variables, to construct a complete set of sepa-
rated variable solutions~‘‘elementary solutions’’!, then to
represent the general solution of the kinetic equation as a
superposition of the elementary solutions, and finally to use
the boundary conditions to determine the coefficients of the
superposition. For simple one-dimensional gas flows this
method allows us to reduce the model kinetic equation to an
integral equation for the perturbation function. Then one has
to apply some numerical procedure to solve this integral
equation.

Details of the method are given by Cercignani26

~Chap.VI!.

2.12.6. Direct Simulation Monte Carlo Method

The region of the gas flow is divided into a network of
cells. The dimensions of the cells must be such that the
change in flow properties across each cell is small. The time
is advanced in discrete steps of magnitudeDt, such thatDt
is small compared with the mean time between two succes-
sive collisions.

The molecular motion and intermolecular collision are un-
coupled over the small time intervalDt by the repetition of
the following procedure:

~i! The molecules are moved through the distance deter-
mined by their velocities andDt. If the trajectory
passes the boundary a simulation of the gas–surface
interaction is performed according to a given law.
New molecules are generated at boundaries across
which there is an inward flux.

~ii ! A representative number of collisions appropriate to
Dt and the number of molecules in the cell is com-
puted. The pre-collision velocities of the molecules
involved in the collision are replaced by the post-
collision values in accordance with a given law of the
intermolecular interaction.

After a sufficient number of the repetitions we may calcu-
late any moment of the distribution function. Details of the
method are given by Bird.10,11
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2.13. Gaseous Mixtures

To describe a gaseous mixture havingN components we
need to consider N distribution functions f i(t,r ,v),
1< i<N, and the system of the Boltzmann equations

] f i

]t
1v–

] f i

]r
5(

j 51

N

Qi j ~ f i f j !, 1< i<N, ~2.106!

whereQi j is the integral describing the collisions between
speciesi and j . The methods of solution to this equation
system are based on the same ideas as those to solve the
single equation~2.12!. The problem is that the computational
efforts drastically increase if we pass from a single gas to a
gaseous mixture. Moreover, in a mixture new phenomena
appear, such as the mass and heat fluxes caused by a con-
centration gradient, the diffusion caused by gradients of the
pressure, temperature and concentration. These phenomena
complicate treatment of the gaseous mixture. That is why
there are very few papers36,44,156,175on the gaseous mixture
flows. Therefore, it is very attractive to use the single gas
results for a gaseous mixture.

It is obvious that the phenomena mentioned in the previ-
ous paragraph cannot be described in the frame of the single
gas. Concerning the other phenomena, viz, the mass and heat
flux caused by the pressure and temperature gradients, it is
possible to offer two approaches to describe a gaseous mix-
ture based on the data obtained for a single gas.

~i! The first approach is that we substitute a gaseous mix-
ture by a single gas having the mean molecular mass.
This means ifni is the number density andmi is the
molecular mass of speciesi , we consider that the
‘‘single’’ gas has the number densityn5( ini and the
molecular massm5( inimi /n. This approach can be
justified only in the hydrodynamic regime.

~ii ! The second approach is that we consider the flow of
every component independently of each other. Apply-
ing the single gas theory to every component of the
mixture we calculate the mass and heat flux as a sum
of the fluxes in these components. This approach is
justified only in the free-molecular regime. In the
transition regime both approaches give approximate
results which can be used for an estimate.

3. Gas Flow Through Long Capillaries

3.1. Remarks

In this section we consider long capillaries so that
L5 l /a@1. What does it mean physically? The pressure and
the temperature relax significantly quicker over a cross sec-
tion than in the capillary as a whole. Thus, we may assume
that the pressure and the temperature do not depend upon the
diametric coordinates, i.e.,

P5P~x!, P~2 l /2!5PI , P~ l /2!5PII , ~3.1!

T5T~x!, T~2 l /2!5TI , T~ l /2!5TII . ~3.2!

The coordinates (x,y,z) are given in Fig. 1. Near the capil-
lary ends this assumption may be violated, but for the long
capillaries the influence of the end effect can be neglected.

Since the thermal conductivity of the capillary walls is
significantly larger than the thermal conductivity of gases,
the temperature distributionT(x) is determined by the ther-
mal properties of the capillary and must be given without a
solution to the kinetic equation. The pressure distribution
P(x) is not knowna priori, but must be found as a solution
of the kinetic equation.

For further derivations we will use the following dimen-
sionless coordinates

x̃5x/a, ỹ5y/a, z̃5z/a. ~3.3!

Let us consider a cross sectionx̃5 x̃* of the capillary being
far away from the capillary ends. The pressure and the tem-
perature near this cross section (ux̃2 x̃* u;1) can be pre-
sented as

P~ x̃ !5P~ x̃* !1
dP

dx̃
U

x̃5 x̃
*

~ x̃2 x̃* !

1
1

2

d2P

dx̃ 2U
x̃5 x̃

*

~ x̃82 x̃* !2, ~3.4!

T~ x̃ !5T~ x̃* !1
dT

dx̃
U

x̃5 x̃
*

~ x̃2 x̃* !

1
1

2

d2T

dx̃ 2U
x̃5 x̃

*

~ x̃82 x̃* !2, ~3.5!

whereux̃82 x̃* u,ux̃2 x̃* u. The estimation of the derivations
shows that

1

P

dP

dx̃
;

PII2PI

PavL
5OS 1

L D ,
1

T

dT

dx̃
;

TII2TI

TavL
5OS 1

L D ,

~3.6!

1

P

d2P

dx̃2
;

PII2PI

Pav L2 5OS 1

L2D ,
1

T

d2T

dx̃ 2
;

TII2TI

TavL
2 5OS 1

L2D ,

~3.7!

where

Pav5
PI1PII

2
, Tav5

TI1TII

2
. ~3.8!

SinceL@1, the first derivatives are small. The second de-
rivatives have the second order of the smallness and can be
omitted in ~3.4! and ~3.5!. Finally we have

P~ x̃!5P* @11jP~ x̃2 x̃* !#,

T~ x̃!5T* @11jT~ x̃2 x̃* !#, ~3.9!

whereP* 5P( x̃* ), T* 5T( x̃* ), and

jP5
1

P*

dP

dx̃
U

x̃5 x̃
*

, jT5
1

T*

dT

dx̃
U

x̃5 x̃
*

. ~3.10!

Thus, we may conclude that:~i! near a given sectionx̃* on
a distance of the order of the capillary diametera, the pres-
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sureP, and the temperatureT linearly depend onx̃; ~ii ! the
gradients of the pressurejP and of the temperaturejT are
small, i.e.,ujPu!1 andujTu!1.

Equations~3.9! have been obtained without any assump-
tion on the pressure and temperature drops. Even with large
drops, the representation~3.9! remains valid. Such represen-
tation of the pressure and temperature distributions allows us
to split the solution of the problem into two stages. In the
first stage we will find the flow rate through the section
x̃5 x̃* as a function ofP* andT* assuming the gradientsjP

andjT to be small and constant. In the second stage consid-
ering a variation ofjP and jT along the capillary on a dis-
tance of the order of the capillary length we will calculate the
mass flow rate and the heat flux through the capillary as a
function of the pressuresPI , PII and the temperaturesTI , TII

on the capillary ends.

3.2. Input Equations

Let us introduce the dimensionless molecular velocity,
bulk velocities and heat flow vector as

c5b* v, ũ5b* u, q̃5
b*
P*

q, ~3.11!

respectively. Here

b* 5S m

2kBT*
D 1/2

. ~3.12!

Since in the first stage we assume the pressure and the tem-
perature gradients to be small and constant, we may linearize
the kinetic equation with respect to the gradientsjP andjT .
Let us perform the linearization near the local Maxwellian
f loc

M (n,T,0) defined by~2.30!, where n( x̃)5P( x̃)/kBT( x̃).
The pressureP( x̃) and the temperatureT( x̃) are determined
by ~3.9!. So, introducing the perturbation functionh as
~2.62!, where h does not depend on thex coordinate, we
reduce Eq.~2.63! as follows:

D̂̃h2 L̂̃h52cx jP2cx~c22 5
2!jT , ~3.13!

D̂̃5ab* D̂, L̂̃5ab* L̂, ~3.14!

whereD̂ is defined by~2.54! andL̂ is defined by~2.55!. The
derivative with respect to the time has been omitted, because
we consider a steady flow. Sinceh does not depend on thex

coordinate, the reduced differential operatorD̂̃ has the form

D̂̃h5cy

]h

] ỹ
, D̂̃h5cy

]h

] ỹ
1cz

]h

] z̃
~3.15!

for the channel and tube, respectively.
If one applies the BGK model~2.45!, the reduced collision

operatorL̂̃ takes the form

L̂̃BGKh5 ñBGK~2cxũx2h!, ñBGK5ab* n, ~3.16!

whereñBGK is the dimensionless collision frequency for this
model. If one applies the S model~2.68!, the reduced colli-

sion operatorL̂̃ has the following form:

L̂̃Sh5 ñSF2cx ũx1
4

15
q̃xcxS c22

5

2D2hG ,
ñS5ab*

P*
m~T* !

, ~3.17!

where ñS is the dimensionless collision frequency for the S
model. Here we have regarded that the bulk velocity and the
heat flow vector have the longitudinal component only ex-
pressed via the perturbation function as

ũx5
1

p3/2 E exp~2c2!cxhdc, ~3.18!

q̃x5
1

p3/2 E exp~2c2!cxS c22
5

2Dhdc. ~3.19!

As has been indicated in Sec. 2.5.1. the BGK model ad-
mits several ways to choose the collision frequencyn. There-
fore, the expression of the dimensionless collision frequency
ñBGK depends on the choice ofn. The most preferable choice
is Eq. ~2.46!, because it provides the correct description of
the mass flow rate caused by the pressure gradient in the
hydrodynamic regime. So, using~2.46! with ~2.11!, ~2.41!,
~2.42! and ~3.12! we have

ñBGK5
Ap

2

a

l*
5d, ~3.20!

wherel* is the mean free path at the pressureP* and the
temperatureT* . Here, the definition ofd ~2.2! has been
used.

So, the choice of the collision frequency~2.46! leads to
the equality betweenñBGK and the rarefaction parameterd.
The other expressions ofn, i.e., ~2.47! and ~2.48!, lead to
other relations betweenñBGK andd, which we will use only
in specific cases. So, presenting the results based on the
BGK model we will imply the relation~3.20! if the other
relations are not mentioned.

For the S model there is the unique relation between the
dimensionless frequencyñS and the rarefaction parameterd.
One can easily verify that they are equal to each other

ñS5d. ~3.21!

Since Equation~3.13! is linear, its solutionh can be de-
composed as

h5hPjP1hTjT . ~3.22!

From ~3.18! and~3.19! one can see that the bulk velocityũx

and heat flow vectorq̃x are decomposed to

ũx5ũxPjP1ũxTjT , q̃x5q̃xPjP1q̃xTjT . ~3.23!
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Substituting~3.22! into ~3.13! and considering that the gra-
dientsjP andjT are independent, we obtain two independent
equations

D̂̃hP2 L̂̃hP52cx , D̂̃hT2 L̂̃hT52cx~c22 5
2!.

~3.24!

The first of them describes the gas flow caused only by the
pressure gradient and the second one describes the flow
caused only by the temperature gradient.

Let us introduce the reduced flow rate and the reduced
heat flux as:

for channel

G
*
ch5

Ṁ ch

aP* b*
52E

21/2

1/2

ũxdỹ,

Q
*
ch5

2b* Ėch

aP*
52E

21/2

1/2

q̃xdỹ, ~3.25!

for tube

G
*
tb5

Ṁ tb

pa2P* b*
54E

0

1

ũxr̃'dr̃' ,

Q
*
tb5

2b* Ėtb

pa2P*
54E

0

1

q̃xr̃'dr̃' , ~3.26!

where r̃'5Aỹ 21 z̃ 2. If we introduce the following nota-
tions:

for channel

G
*P
ch 522E

21/2

1/2

ũxPdỹ, G
* T
ch 52E

21/2

1/2

ũxT dỹ,

~3.27!

Q
*P
ch 52E

21/2

1/2

q̃xPdỹ, Q
* T
ch 522E

21/2

1/2

q̃xT dỹ,

~3.28!

for tube

G
*P
tb 524E

0

1

ũxPr̃'dr̃' , G
* T
tb 54E

0

1

ũxTr̃'dr̃' ,

~3.29!

Q
*P
tb 54E

0

1

q̃xPr̃' dr̃' , Q
* T
tb 524E

0

1

q̃xTr̃' dr̃' ,

~3.30!

with the help of~3.23!, ~3.25! and ~3.26! we obtaina

G* 52G* PjP1G* TjT , Q* 5Q* PjP2Q* TjT .

~3.31!

Thus,G* P, G* T , Q* P, Q* T are the dimensionless coeffi-
cients of proportionality between the flow rate/the heat flux

in the capillary sectionx̃5 x̃* and thelocal gradients of the
pressurejP and temperaturejT . They are introduced so as to
be always positive.

The introduced coefficients are related with the thermody-
namic fluxes~2.82! and ~2.83! as:

for channel

JP52
an*
2b*

G
*
ch, JT52

an*
2b*

Q
*
ch, ~3.32!

for tube

JP52
pa2n*
2b*

G
*
tb , JT52

pa2n*
b*

Q
*
tb . ~3.33!

In the expressions ofJT the second term must be omitted
because in a long capillary there is no gas–surface heat ex-
change. The kinetic coefficients take the form

LPP5AG* P, LPT52AG* T , LTP52AQ* P,

LTT5AQ* T , ~3.34!

where

Ach5
an*
2b*

, Atb5
pa2n*
2b*

, ~3.35!

for channel and tube, respectively. Based on these relations,
we may use the same terminology that was introduced for
the kinetic coefficientsLnk in Sec. 2.10, i.e.,G* P is the
Poiseuille flow,G* T is the thermal creep,Q* P is the mecha-
nocaloric heat flux, andQ* T is the ordinary heat flux.

From Onsager ’s relation~2.79! and the relations~3.34!
we have

G* T5Q* P. ~3.36!

This relation is very useful. SinceG* T and Q* P are calcu-
lated from the two independent equations~3.24!, the relation
~3.36! serves as an additional criterion of the numerical pre-
cision. On the other hand, if one is going to calculate only
the flow rate, i.e., only the coefficientsG* P and G* T , one
does not need to solve the second equation~3.24!; computing
Q* P from the first equation~3.24! one immediately getsG* T

from ~3.36!.
Below, the flow ratesG* P, G* T and the heat fluxesQ* P,

Q* T will be presented here as a function of the rarefaction
parameterd. Note thatd without a subscript is referred to the
local pressureP* and thelocal temperatureT* . With the
help of ~2.2! and ~2.3! the rarefaction parameterd is related
to P* andT* as

d5
Ap

2

a

l*
5

aP*
m~T* ! S m

2kBT*
D 1/2

. ~3.37!

Here, it should be noted that to relate the parameterd with
the pressureP* and temperatureT* we have to indicate the
type of gas, because the relation~3.37! contains two specific
characteristics of gas: the molecular massm and the viscos-
ity m. But representing the dimensionless flow ratesG* P,
G* T , Q* P, Q* T as a function of the rarefaction parameterd,

aIf the superscripts ch and tb are omitted the corresponding expression is
valid for both channel and tube.
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it is not necessary to specify the gas. These coefficients have
been introduced so as their relations with the parameterd do
not contain any specific characteristic of gas.

3.3. Application of the Integro-Moment Method

In general form the integro-moments method is described
in Sec. 2.12.3. Since this method is most applicable to the
one-dimensional rarefied gas flows, below the integral equa-
tions for this case will be written down.

3.3.1. Channel Flow

From the BGK model we have two independent equations
for the channel flow

ũxm~ ỹ!5E
21/2

1/2

K 11~ ỹ,ỹ8!ũxm~ ỹ8!dỹ81S 1m~ ỹ!,

m5P,T. ~3.38!

The heat flow vector is calculated via the bulk velocity

q̃xm~ ỹ!5E
21/2

1/2

K 21~ ỹ,ỹ8!ũxm~ ỹ8!dỹ81S 2m~ ỹ!,

m5P,T. ~3.39!

From the S model we have two independent systems of si-
multaneous equations:

S ũxm~ ỹ!

q̃xm~ ỹ!
D 5E

21/2

1/2 S K 11~ ỹ,ỹ8! K 12~ ỹ,ỹ8!

K 21~ ỹ,ỹ8! K 22~ ỹ,ỹ8!
D

3S ũxm~ ỹ8!

q̃xm~ ỹ8!
D dỹ81S S 1m~ ỹ!

S 2m~ ỹ!
D , m5P,T.

~3.40!

The derivation of such types of equations can be found in
the literature.22,28,47,155,166

In the case of the diffuse~2.22! scattering the kernelsK i j

and the free termsS im have the following form:

K 115
d

Ap
I 21 , K 215

d

Ap
S I 12

1

2
I 21D ,

K 125
2

15
K 21, K 225

2d

15Ap
S I 32I 11

9

4
I 21D ,

~3.41!

S 1P52
1

2d E
21/2

1/2

K 11dỹ8, S 2P52
1

2d E
21/2

1/2

K 21dỹ8,

S 1T5S 2P, S 2T52
15

4d E
21/2

1/2

K 22dỹ8.

Here,I n are the special transcendental functions defined as

I n5I n~ t !5E
0

`

cn expS 2c22
t

cDdc. ~3.42!

In ~3.41! the argumentt is (du ỹ2 ỹ8u).

For the diffuse-specular scattering~2.23! the expressions
of K i j andS im can be found in the literature.47,91,166

3.3.2. Tube Flow

From the BGK model we have two analogous integral
equations for the tube flow

ũxm~ r̃'!5E
S'

K 11~ r̃' , r̃'8 !ũxm~ r̃'8 !dr̃'8 1S 1m~ r̃'!,

m5P,T, ~3.43!

where r̃'5( ỹ,z̃) is the two-dimensional reduced position
vector andS' is the tube cross section. The heat flow vector
is calculated as

q̃xm~ r̃'!5E
S'

K 21~ r̃' , r̃'8 !ũxm~ r̃'8 !dr̃'8 1S 2m~ r̃'!,

m5P,T. ~3.44!

From the S model we have two independent systems of
simultaneous equations

S ũxm~ r̃'!

q̃xm~ r̃'!
D 5E

S'

S K 11~ r̃' , r̃'8 ! K 12~ r̃' , r̃'8 !

K 21~ r̃' , r̃'8 ! K 22~ r̃' , r̃'8 !
D

3S ũxm~ r̃'8 !

q̃xm~ r̃'8 !
D dr̃'8 1S S 1m~ r̃'!

S 2m~ r̃'!
D , m5P,T.

~3.45!

The derivation of such types of equations can be found in
the literature.35,45,154,151

In the case of the diffuse scattering~2.22! the kernelsK i j

and the free termsS im take the following form:

K 115
d

pu r̃'2 r̃'8 u
I 0 , K 215

d

pu r̃'2 r̃'8 u
~ I 22I 0!,

K 125
2

15
K 21, K 225

2d

15pu r̃'2 r̃'8 u
S I 422I 21

5

2
I 0D ,

~3.46!

S 1P52
1

2d E
S'

K 11dr̃'8 , S 2P52
1

2d E
S'

K 21dr̃'8 ,

S 1T5S 2P, S 2T52
15

4d E
S'

K 22dr̃'8 .

Here, the argumentt of the special functionsI n is
(dur'2r'8 u).

The expressions ofK i j and S im for the diffuse-specular
scattering~2.23! can be found in the literature.45,125,154

3.3.3. Special Functions In

Here, some useful properties of the special functionsI n

defined by~3.42! will be given @see Abramovitz1 ~p.1001!#.
The functions of the different ordern are related as
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dI n~ t !

dt
52I n21~ t !, ~3.47!

2I n~ t !5~n21!I n22~ t !1tI n23~ t !. ~3.48!

The power series representation has the form

2I 1~ t !5 (
k50

`

~ak ln t1bk!t
k, ~3.49!

ak5
22ak22

k~k21!~k22!
,

bk5
22bk222~3k226k12!ak

k~k21!~k22!
, k.2,

a05a150, a252b0 , b051, b152Ap,

b250.6341754927.

The asymptotic representation ofI n(t) at t→` is as follows:

I n~ t !;Ap

3
32 n/2vn/2 exp~2v !(

k50

`
ak

vk , v53S t

2D 2/3

,

~3.50!

a051, a15
1

12
~3n213n21!,

12~k12!ak1252~12k2136k23n223n125!ak11

1
1

2
~n22k!~2k132n!~2k1312n!ak .

3.3.4. Trial Functions for the Variational Solution

The above given integral equations can be solved by the
direct numerical method or by the variational method de-
scribed in Sec. 2.12.4. To apply the variational method the
following trial functions are usually used:

ũxm5c1m1c2mỹ 2, ũxm5c1m1c2mr̃ '
2 , m5P,T

~3.51!

for channel and tube, respectively. The trial function for the
heat flow vector is a constant

q̃xm5c3m , m5P,T. ~3.52!

Then, according to the method described in Sec. 2.12.4, one
obtains from~3.40! or ~3.45! ~S model! the following alge-
braic equation systems for the constantc1m , c2m andc3m :

(
j 51

3

Ai j cjm5B im , m5P,T, ~3.53!

whereAi j is a symmetric matrix. The elements of this ma-
trix and the free termsB im have the form

for channel

A11512E
21/2

1/2

K 11dỹ8dỹ,

A125
1

12
2E

21/2

1/2

K 11ỹ82dỹ8dỹ,

A1352E
21/2

1/2

K 12dỹ8dỹ,

A225
1

80
2E

21/2

1/2

K 11ỹ82ỹ 2dỹ8dỹ,

A2352E
21/2

1/2

K 12ỹ
2dỹ8dỹ,

A33512E
21/2

1/2

K 22dỹ8dỹ,

B1m5E
21/2

1/2

S 1mdỹ, B2m5E
21/2

1/2

S 1mỹ 2dỹ,

B3m5E
21/2

1/2

S 2m dỹ,

for tube

A11512
1

p E
S'

K 11dr̃'8 dr̃' ,

A125
1

2
2

1

p E
S'

K 11r̃'8
2dr̃'8 dr̃' ,

A1352
1

p E
S'

K 12dr̃'8 dr̃' ,

A225
1

3
2

1

p E
S'

K 11r̃'8
2r̃'

2 dr̃'8 dr̃' ,

A2352
1

p E
S'

K 12r̃ '
2 dr̃'8 dr̃' ,

A33512
1

p E
S'

K 22dr̃'8 dr̃' ,

B1m5
1

p E
S'

S 1dr̃' , B2m5
1

p E
S'

S 1r̃ '
2 dr̃' ,

B3m5
1

p E
S'

S 2dr̃' .

The coefficientsAi j and B im can be calculated numeri-
cally for any value of the rarefaction parameterd. Then,
resolving the systems~3.53! one knows the bulk velocity
~3.51! and the heat flow vector~3.52! and consequently all
coefficients defined by~3.27!–~3.30!.

3.4. Transition Regime

3.4.1. Plane Poiseuille Flow

Diffuse scattering:Among all types of flows considered in
this article the plane Poiseuille flowG

*P
ch under the supposi-

tion of the diffuse scattering~2.22! is the most deeply inves-
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tigated theoretically. The list of papers describing this kind
of rarefied gas flow is very long. Some estimations of the
flow rateG

*P
ch can be found in the literature.22,158,166,178These

works provide only a qualitative behavior of the coefficient
G

*P
ch . Some results obtained on the basis of the BE by the

moment method are presented in the literature.67,78,119,120,153

An analysis of the plane Poiseuille flow based on the method
of elementary solutions is given in the literature.24,38

Numerical results obtained from the BGK model
by various methods can be found in the litera-
ture.17,20,28,34,47,66,68,79,87,91,99,102,147,148Numerical results
based on the S model are presented by Chernyaket al.42

Results based on numerical calculation of the BE are avail-
able in the literature.63,97,116

Thus, due to the simplicity of this type of flow the coeffi-
cient G

*P
ch was obtained using various kinetic equations and

applying almost all methods elaborated in the RGD. Below,
an analysis of the above mentioned numerical results is
given.

Cercignani and Daneri28 solved the integral equation
~3.38! ~BGK! by the direct numerical method. Their results
are presented in the second column of Table 1. Then, Cer-

cignani and Pagani34 ~third column! solved the same integral
equation by the variational method, which gives a good
agreement with the exact numerical solution.28 Huang
et al.66 solved Eq.~3.13! with ~3.16! ~BGK! by the discrete
velocity method. The results are presented in the fourth col-
umn of Table 1. One can see that there is good agreement
with the previous results in the transition and hydrodynamic
regimes. The disagreement at smalld is explained by the
numerical grid used by Huanget al.66 which was not suffi-
ciently dense.

Loyalka and Lang99 solved the BE for Maxwellian mol-
ecules~fifth column! and the model equation with the vari-
able collision frequencyn appropriate to the rigid spheres
~sixth column! by the variational method. It can be seen that
the BE for Maxwellian molecules gives rather understated

FIG. 5. Reduced flow rateG
*P
ch vs d at diffuse scattering: solid line—BGK

by Cercignani and Pagani~Ref. 34!, crosses—BE by Ohwadaet al. ~Ref.
116!, circles—BE by Hickey and Loyalka~Ref. 63!.

TABLE 1. Reduced flow rateG
*P
ch vs d: diffuse scattering, different methods

d

G
*P
ch

a b c d e f g h

0.01 3.0499 3.0489 2.2114 ••• ••• ••• 3.0519 ¯

0.1 2.0328 2.0314 1.9829 1.8818 2.0861 2.0327 2.0397 1.9318
0.2 1.8083 1.8079 1.8167 1.6994 1.8465 ¯ ¯ 1.7407
0.5 1.6017 1.6017 1.6050 1.5491 1.6166 1.6018 1.6147 1.5607
1.0 1.5379 1.5389 1.5381 1.5116 1.5343 1.5386 1.5541 1.5086
2.0 1.5912 1.5942 1.5950 1.5491 1.5709 1.5948 ¯ 1.5681
4.0 1.8450 1.8440 1.8459 1.7958 1.8075 1.8459 ¯ ¯

5.0 1.9895 1.9883 1.9908 1.9634 1.9485 1.9907 2.0080 1.9637
7.0 2.2904 2.2914 2.2945 2.2782 2.2482 2.2949 ¯ ¯

10.0 2.7558 2.7638 2.7681 2.7536 2.7790 2.7686 2.7863 2.7350

aCercignani and Daneri~Ref. 28!, Eq. ~3.38! ~BGK!, direct numerical method.
bCercignani and Pagani~Ref. 34!, Eq. ~3.38! ~BGK!, variational method.
cHuanget al. ~Ref. 66!, Eq. ~3.13! with ~3.16! ~BGK!, discrete velocity method.
dLoyalka and Lang~Ref. 99!, BE for Maxwell’s molecules, variational method.
eLoyalka and Lang~Ref. 99!, Model eq. with variable collision frequency, variational method.
fLoyalka et al. ~Ref. 102!, Eq. ~3.13! with ~3.16! ~BGK!, method of elementary solutions.
gChernyaket al. ~Ref. 42!, Eq. ~3.40! ~S model!, direct numerical method.
hHickey and Loyalka~Ref. 63!, Eq. ~3.13! with ~2.54! ~BE!, discrete velocity method.

TABLE 2. Reduced flow rateG
*P
ch vs d by Ohwadaet al. ~Ref. 116!: diffuse

scattering, BE

d G
*P
ch d G

*P
ch

0.0393 2.2958 0.785 1.5148
0.0524 2.1816 0.982 1.5066
0.0785 2.0318 1.31 1.5124
0.0982 1.9556 1.96 1.5602
0.131 1.8642 2.62 1.6304
0.196 1.7498 3.93 1.7998
0.262 1.6796 5.24 1.9876
0.393 1.5982 7.85 2.386
0.524 1.5542
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results, while the variable collision frequency model gives
fairly good results.

Loyalkaet al.102 solved the BGK model by the method of
elementary solutions, which gives good agreement with the
integro-moment method in the whole range of the rarefaction
parameterd. The results are given in the seventh column of
Table 1.

Chernyaket al.42 solved the integral equation~3.40! ~S
model! by both variational and direct numerical methods.
They also obtained a perfect agreement between the two
methods. In the eighth column of Table 1 their results based
on the direct numerical method are presented. One can see
that there is a fine agreement between the solutions based on
the BGK equation and that based on the S model.

Hickey and Loyalka63 ~ninth column! solved numerically
the BE for rigid spheres. One can see that the disagreement
between the model equations~BGK and S model! and the
exact BE is within 2%.

Ohwadaet al.116 also solved the BE. But they introduced
the rarefaction parameter asd52a/(Apl* ). This definition
of d follows from the BGK model with the frequency~2.48!.
Therefore, the values ofd given by Ohwadaet al.116 must be
recalculated. Their results are presented separately in Table 2
with the parameterd recalculated in our notations. A com-
parison of these results with those obtained by Hickey and
Loyalka63 is performed in Fig. 5. One can see that the two
numerical solutions of the BE obtained independently are in
a good agreement between themselves. The numerical data
by Cercignani and Pagani34 based on the BGK model are
also shown in Fig. 5.

The numerical results based on the BGK model, i.e., Refs.
17, 20, 47, 79, 87, 91, 97, 147, 148, are in a good agreement
with the data described above. The results of the paper68 are
erroneous as is pointed out by Loyalka.89

Thus, from this analysis we may conclude that the most
simple way to calculate the coefficientG

*P
ch is to apply the

variational method based on the trial functions~3.51! to the
BGK equation. This method gives reliable results with mod-
est calculation efforts. The complete data on the coefficient
G

*P
ch obtained by Cercignani and Pagani34 using this method

are presented in Table 3.
Diffuse-specular scattering:The first results for the

diffuse-specular scattering~2.23! were obtained by Chernyak
et al.47 based on Eq.~3.38! ~BGK! solved by the variational
method. Then, Loyalka91 solved the same equation by the
direct numerical method. In the paper by Loyalkaet al.102

the numerical solution of the BGK equation by the method
of elementary solutions is given. To perform a comparison
between these results all of them are presented in Table 4.
One can see that the variational results by Chernyaket al.47

differ from the exact results by Loyalka.91,102 At the same
time, the results of the works91,102obtained by the two quite
different methods are in good agreement between them. So,
we conclude that the results by Loyalka91 are reliable. His
complete data are given in Table 5.

Loyalka and Hickey97 solved the BE by the discrete ve-
locity method. Their results are given in Table 5. Unfortu-
nately, it is impossible to compare the solution based on the
BGK model91 with the BE solution,97 because they were ob-
tained for different values of the gas–surface interaction pa-
rametera.

TABLE 3. Reduced flow rateG
*P
ch vs d, complete data by Cercignani &

Pagani~Ref. 34!: diffuse scattering, BGK

d G
*P
ch d G

*P
ch

0.01 3.0489 1.5 1.5530
0.02 2.7107 1.6 1.5598
0.03 2.5234 1.7 1.5674
0.04 2.3964 1.8 1.5757
0.05 2.3016 1.9 1.5847
0.06 2.2217 2.0 1.5942
0.07 2.1655 2.5 1.6480
0.08 2.1140 3.0 1.7092
0.09 2.0698 3.5 1.7751
0.1 2.0314 4.0 1.8440
0.2 1.8079 4.5 1.9153
0.3 1.7092 5.0 1.9883
0.4 1.6408 5.5 2.0627
0.5 1.6017 6.0 2.1381
0.6 1.5761 6.5 2.2144
0.7 1.5591 7.0 2.2914
0.8 1.5482 7.5 2.3690
0.9 1.5416 8.0 2.4472
1.0 1.5389 8.5 2.5258
1.1 1.5379 9.0 2.6048
1.2 1.5394 9.5 2.6041
1.3 1.5427 10.0 2.7638
1.4 1.5473 10.5 2.8438

TABLE 4. Reduced flow rateG
*P
ch vs d anda: different methods

d

G
*P
ch

a50.88 a50.80

a b c a b c

0.05 2.6456 2.7383 2.7383 2.9206 3.0897 3.0897
0.1 2.3261 2.4060 2.4060 2.5605 2.7077 2.7077
1.0 1.7348 1.7921 1.7920 1.8914 2.0019 2.0018

10.0 2.9529 3.0241 3.0177 3.0836 3.2305 3.2241

aChernyaket al. ~Ref. 47!, Eq. ~3.38! ~BGK!, variational method.
bLoyalka ~Ref. 91!, Eq. ~3.38! ~BGK!, direct numerical method.
cLoyalka et al. ~Ref. 102!, Eq. ~3.13! with ~3.16! ~BGK!, method of elementary solutions.
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3.4.2. Cylindrical Poiseuille Flow

Diffuse scattering:Some analytical results on the coeffi-
cient G

*P
tb for the diffuse scattering~2.22! can be found in

Refs. 56, 151, 157, 176, which are restricted by the small
range of the rarefaction parameter. These results will not be
considered here. Let us analyze the results obtained for the
entire range ofd.

To calculateG
*P
tb Cercignani and Sernagiotto35 solved the

integral equation~3.43! ~BGK! by direct numerical methods.
Their results are presented in the second column of Table 6.
Then, Cercignani and Pagani33 ~third column! resolved the
same integral equation by the variational method, which
gives good agreement with the exact solution. Lo and
Loyalka79 ~fourth column! also solved this integral equation
by the optimized numerical method with great precision.
These results can be considered as a most exact numerical
solution of the BGK model. Sharipov141 ~fifth column!
solved the S model, i.e., Eq.~3.13! with ~3.17!, by the dis-
crete velocity method. Loyalka and Hamoodi95 ~sixth col-
umn! numerically solved the BE for a rigid sphere gas.

From Table 6 one can see that there is good agreement
between the results based on the BGK model and those ob-
tained from the S model. The disagreement between the

TABLE 5. Reduced flow rateG
*P
ch vs d anda, complete data

d

G
*P
ch

Loyalka ~Ref. 91!a Loyalka and Hickey~Ref. 97!b

a50.96 a50.92 a50.88 a50.84 a50.80 a50.75 a50.50

0.001 4.5646 4.8773 5.2149 5.5808 5.9788 ¯ ¯

0.01 3.2417 3.2417 3.6697 3.9095 4.1695 ¯ ¯

0.02 2.8770 3.0548 3.2463 3.4530 3.6771 ¯ ¯

0.03 2.6755 3.0381 3.0131 3.2021 3.4070 ¯ ¯

0.04 2.5390 2.6915 2.8556 3.0328 3.2249 ¯ ¯

0.05 2.4373 2.5823 2.7383 2.9069 3.0897 ¯ ¯

0.07 2.2916 2.4259 2.5706 2.7270 2.8967 ¯ ¯

0.09 2.1893 2.3163 2.4532 2.6011 2.7618 ¯ ¯

0.1 2.1482 2.2723 2.4060 2.5507 2.7077 2.7860 4.3628
0.25 ¯ ¯ ¯ ¯ ¯ 2.4065 3.7697
0.3 1.7945 1.8937 2.0011 2.1176 2.2448 ¯ ¯

0.5 1.6863 1.7776 1.8766 1.9844 2.1023 2.2128 3.4748
0.7 1.6398 1.7272 1.8220 1.9254 2.0388 ¯ ¯

0.75 ¯ ¯ ¯ ¯ ¯ 2.1449 3.3694
0.8 1.6202 1.7052 1.7976 1.8986 2.0092 ¯ ¯

0.9 ¯ ¯ ¯ ¯ ¯ 2.1269 3.3392
1.0 1.6163 1.7005 1.7921 1.8921 2.0019 2.1204 3.3270
1.1 ¯ ¯ ¯ ¯ ¯ 2.1171 3.3192
1.2 ¯ ¯ ¯ ¯ ¯ 2.1164 3.3149
1.25 1.6174 1.7001 1.7902 1.8887 1.9969 ¯ ¯

1.3 ¯ ¯ ¯ ¯ ¯ 2.1178 3.3136
1.4 ¯ ¯ ¯ ¯ ¯ 2.1209 3.3144
1.5 1.6289 1.7107 1.7999 1.8974 2.0046 2.1254 3.3171
2.0 1.6694 1.7503 1.8386 1.9352 2.0414 2.1625 3.3491
2.5 1.7233 1.8039 1.8918 1.9881 2.0939 ¯ ¯

3.0 1.7847 1.8653 1.9531 2.0493 2.1551 2.2748 3.4618
3.5 1.8510 1.9316 2.0196 2.1158 2.2217 ¯ ¯

4.0 1.9205 2.0013 2.0894 2.1858 2.2918 ¯ ¯

5.0 2.0661 2.1472 2.2356 2.3324 2.4388 2.5555 3.7496
6.0 2.2173 2.2988 2.3876 2.4848 2.5916 ¯ ¯

7.0 2.3722 2.4541 2.5433 2.6408 2.7480 2.8625 4.0633
9.0 2.6807 2.7722 2.8620 2.9601 3.0679 ¯ ¯

10.0 2.8512 2.9340 3.0241 3.1225 3.2305 3.3407 4.5490

aEquation~3.38!, ~BGK!, direct numerical method.
bEquation~3.13! with ~2.54! ~BE!, discrete velocity method.

TABLE 6. Reduced flow rateG
*P
tb vs d: diffuse scattering, different methods

d

G
*P
tb

a b c d e

0.01 1.4768 1.4801 1.4763 1.4800 1.4681
0.1 1.4043 1.4039 1.4039 1.4101 1.3984
1.0 1.4594 1.4576 1.4582 1.4758 1.4499

10.0 3.5821 3.5573 3.5633 3.5749 3.5608

aCercignani and Sernagiotto~Ref. 35!, Eq. ~3.43! ~BGK!, direct numerical
method.

bCercignani and Pagani~Ref. 33!, Eq. ~3.43! ~BGK!, variational method.
cLo and Loyalka~Ref. 79!, Eq. ~3.43! ~BGK!, optimized numerical method.
dSharipov ~Ref. 141!, Eq. ~3.13! with ~3.17! ~S model!, discrete velocity
method.

eLoyalka and Hamoodi~Ref. 95!, ~3.13! with ~2.54! ~BE!, discrete velocity
method.
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model equation solutions and that obtained from the BE is
within 2%, which can be considered reasonable.

The numerical data on the coefficientG
*P
tb can be also

found in Refs. 46, 81, 84, 91, 104, 123, 125, 160. All these
results are in good agreement with the exact solution by Lo
and Loyalka.79

The complete data on the coefficientG
*P
tb based on the

BGK equation, S model and BE are presented in Table 7.
Diffuse-specular scattering:Numerical data on the coeffi-

cientG
*P
tb based on the BGK model with the diffuse-specular

scattering~2.23! are available in Refs. 81, 91, 123@direct
numerical solution of Eq.~3.43!# and in Refs. 124, 125
@variational solution of Eq.~3.43!#. The numerical solution
obtained from the S model by the discrete velocity method is
given by Sharipov.141 A comparison between these results is

performed in Table 8. The results by Porodnovet al.125 are
not presented because they are very close to the results of the
paper.124

From Table 8 one can see that:~i! the results by Loyalka91

are erroneous, since they do not coincide with all the rest of
the data, even with the data obtained later by himself with
collaborators;81 ~ii ! there is good agreement between the dif-
ferent methods of solution and between the different model
equations. Atd510 the disagreement between the varia-
tional and exact methods is about 2%. But for larged the
variational method gives a sufficiently high precision. More-
over, the solution of the S model141 obtained with great pre-
cision gave good agreement with the variational solution.
Thus, we may conclude that the variational solution of the
BGK model by Porodnovet al.124,125and the discrete veloc-

TABLE 7. Reduced flow rateG
*P
tb vs d, complete data: diffuse scattering

d

G
*P
tb

d

G
*P
tb

a b c a b c

0.0 1.5045 1.5045 ¯ 1.5 ¯ ¯ 1.5512
0.0001 1.5026 ¯ ¯ 1.6 1.5753 1.5956 ¯

0.001 ¯ ¯ 1.4845 1.8 1.6171 1.6373 ¯

0.002 1.4962 ¯ ¯ 2.0 1.6608 1.6799 1.6573
0.004 1.4902 ¯ ¯ 3.0 1.8850 1.9014 1.8795
0.006 1.4852 ¯ ¯ 4.0 2.1188 2.1315 ¯

0.008 1.4808 ¯ ¯ 5.0 2.3578 2.3666 2.3472
0.01 1.4768 1.4800 1.4704 6.0 2.5999 2.6049 ¯

0.02 1.4608 1.4636 ¯ 7.0 2.8440 2.8455 2.8282
0.04 1.4391 1.4418 ¯ 8.0 3.0894 3.0878 ¯

0.08 1.4131 1.4168 ¯ 9.0 3.3355 3.3314 ¯

0.1 1.4043 1.4101 1.4039 10.0 3.5821 3.5749 3.5623
0.2 1.3820 1.3911 1.3812 20.0 6.0411 6.0492 ¯

0.3 1.3767 1.3876 1.3756 30.0 8.5333 8.5392 ¯

0.4 1.3796 1.3920 1.3782 40.0 11.0295 11.036 ¯

0.5 ¯ ¯ 1.3857 50.0 13.5269 13.459 ¯

0.6 1.3982 1.4130 1.3963 60.0 16.0254 ¯ ¯

0.8 1.4261 1.4425 1.4238 70.0 18.5244 ¯ ¯

1.0 1.4594 1.4758 1.4567 80.0 21.0234 ¯ ¯

1.2 1.4959 1.5158 ¯ 90.0 23.5219 ¯ ¯

1.4 1.5348 1.5550 ¯ 100.0 26.0214 ¯ ¯

aCercignani and Sernagiotto~Ref. 35! and Lo and Loyalka~Ref. 79!, BGK.
bSharipov~Ref. 141!, S model.
cLoyalka and Hamoodi~Ref. 95!, BE.

TABLE 8. Reduced flow rateG
*P
tb vs d anda: different methods

d

G
*P
tb

a50.8 a50.6

a b c d e b c d e

0.01 2.1662 2.187 2.187 2.1827 2.1853 3.374 3.374 3.3381 3.3374
0.1 1.9211 1.993 1.992 1.9988 2.0043 2.944 2.950 2.9542 2.9597
1.0 1.6531 1.930 1.937 1.9363 1.9514 2.706 2.689 2.7215 2.7277

10.0 3.5823 4.025 4.092 4.1021 4.0343 4.785 4.878 4.9487 4.7703

aLoyalka ~Ref. 91!, Eq. ~3.43! ~BGK!, direct numerical method.
bPorodnov and Tukhvetov~Ref. 124!, Eq. ~3.43! ~BGK!, variational method.
cPorodnov and Tukhvetov~Ref. 123!, Eq. ~3.43! ~BGK!, direct numerical method.
dLo et al. ~Ref. 81!, Eq. ~3.43! ~BGK!, direct numerical method.
eSharipov~Ref. 141!, Eq. ~3.13! with ~3.17! ~S model!, discrete velocity method.
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ity solution of the S model by Sharipov141 are most reliable.
In Table 9 the complete data on the coefficientG

*P
tb based

on the variational solution of the BGK model124,125are pre-
sented. The complete data on this coefficient based on the
S-model141 are given in Table 10.

3.4.3. Plane Thermal Creep Flow

Diffuse scattering:To calculate the thermal creepG
*T
ch

Loyalka87 solved the integral equation~3.43! ~BGK!, which
implies the diffuse scattering~2.22!, by the variational

method. Then, he solved the same equation by the direct
numerical method.89 In the work102 the data obtained from
the BGK model by the method of elementary solutions are
presented. In Table 11 a comparison between these three
solutions is performed. One can see that there is good agree-
ment between them.

Chernyaket al.42 solved the integral equation~3.40! ~S
model! by the direct numerical method~fifth column! and by
the variational one~sixth column!. These results also coin-
cide perfectly each with other.

The seventh column contains the results by Loyalka and
Hickey97 based on the BE solved by the discrete velocity
method. The results by Ohwadaet al.116 based on the BE are
presented separately in Table 12, whered is recalculated
according to our definition.

A comparison between the results obtained from the dif-
ferent equations is performed also in Fig. 6. From this figure
we may conclude that:~i! the numerical solutions of the BE
equation obtained by Loyalka and Hickey97 ~circles! and by
Ohwadaet al.116 ~crosses! for the different values ofd are in
a good agreement;~ii ! the solution of the S model~square! is
closer to the BE solution than the BGK solution~solid line!.

From Table 11 and Fig. 6 one can see that unlike the
coefficientG

*P
ch , for the thermal creepG

*T
ch there is no agree-

ment between the results obtained from the different model
equations. The S model gives the disagreement~about 8%!
with the BE solution, which can be regarded as reasonable.
The disagreement of the BGK model solution with the BE
solution reaches 30%. This large disagreement is a conse-
quence of the fact that the BGK model does not give the
correct value of the Prandtl number. The dimensionless col-

lision frequencyñBGK related with the rarefaction parameter
d by ~3.20! provides the correct values of the Poiseuille flow

TABLE 9. Reduced flow rateG
*P
tb vs d anda by Porodnovet al. ~Refs. 124 and 125!: BGK

d

G
*P
tb

a50.98 a50.94 a50.90 a50.84 a50.80 a50.6

0.01 1.534 1.657 1.791 2.026 2.187 3.374
0.02 1.516 1.635 1.764 1.983 2.144 3.255
0.04 1.492 1.605 1.728 1.933 2.085 3.137
0.06 1.475 1.585 1.703 1.899 2.045 3.044
0.08 1.462 1.569 1.685 1.873 2.014 ¯

0.1 1.452 1.556 1.668 1.853 1.992 2.944
0.2 1.426 1.523 1.627 1.806 1.931 ¯

0.4 1.420 1.510 1.615 1.768 1.888 2.720
0.6 1.437 1.523 1.621 1.772 1.888 2.691
0.8 1.464 1.547 1.638 1.791 1.904 ¯

1.0 1.496 1.578 1.668 1.818 1.930 2.706
2.0 1.693 1.773 1.861 2.007 2.116 2.879
3.0 1.914 1.994 2.081 2.227 2.336 3.096
4.0 2.145 2.225 2.312 2.458 2.567 3.327
5.0 2.381 2.461 2.548 2.694 2.803 3.565
6.0 2.620 2.700 2.787 2.934 3.003 ¯

7.0 2.862 2.942 3.029 3.167 3.285 ¯

8.0 3.105 3.185 3.272 3.420 3.529 4.293
9.0 3.349 3.430 3.517 3.664 3.778 ¯

10.0 3.595 3.675 3.761 3.910 4.019 4.785

TABLE 10. Reduced flow rateG
*P
tb vs d and a by Sharipov~Ref. 141!:

S model

d

G
*P
tb

d

G
*P
tb

a50.8 a50.6 a50.8 a50.6

0.0005 2.2484 3.4875 0.9 1.9373 2.7183
0.001 2.2437 3.4751 1.0 1.9514 2.7277
0.005 2.2131 3.4001 1.2 1.9859 2.7559
0.01 2.1853 3.3374 1.4 2.0214 2.7861
0.02 2.1442 3.2488 1.6 2.0593 2.8201
0.03 2.1141 3.1853 1.8 2.0991 2.8568
0.04 2.0901 3.1355 2.0 2.1402 2.8956
0.05 2.0703 3.0945 3.0 2.3585 3.1074
0.06 2.0534 3.0599 4.0 2.5881 3.3342
0.07 2.0388 3.0299 5.0 2.8233 3.5677
0.08 2.0259 3.0037 6.0 3.0620 3.8050
0.09 2.0145 2.9805 7.0 3.3030 4.0446
0.1 2.0043 2.9597 8.0 3.5455 4.2858
0.2 1.9444 2.8346 9.0 3.7893 4.5281
0.3 1.9169 2.7710 10.0 4.0343 4.7703
0.4 1.9056 2.7367 20.0 6.5086 7.2387
0.5 1.9033 2.7184 30.0 8.9965 9.7105
0.6 1.9069 2.7101 40.0 11.491 12.185
0.7 1.9144 2.7085 50.0 13.972 14.656
0.8 1.9248 2.7117
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G* P. But it cannot provide the correct value of the thermal
creep.

The numerical data based on the BGK model can be cor-
rected using the expression of the frequencyn in the form
~2.47!. Then, the relation between the dimensionless colli-
sion frequencyñBGK defined by~3.16! with the rarefaction
parameterd will be as follows

ñBGK5 2
3 d ~3.54!

instead of~3.20!. So, to use the collision frequencyn in the
form ~2.47! we have to recalculate the rarefaction parameter
d.

The dashed line in Fig. 6 corresponds to the dependence of
G

*T
ch on the recalculatedd. One can see that the BGK model

with the collision frequencyñBGK related withd by ~3.54!
gives good agreement with the BE solution for the coeffi-
cient G

*T
ch . But one must bear in mind that the BGK model

with ~3.54! gives an incorrect value of the coefficientG* P in
the transition and hydrodynamic regimes.

The numerical data on the coefficientG* T are available
also in the literature.17,80,91,103All these results are in good
agreement with the data given above. The results of the
work68 are erroneous as is pointed out by Loyalka.89 Unfor-
tunately, the data based on the S model, which would be very
useful here, are presented very poorly by Chernyaket al.42

The complete data based on the BGK model89 are given in
Table 13. The coefficientG

*T
ch is presented as a function of

the dimensionless collision frequencyñBGK . The rarefaction
parameter recalculated by~3.54! is also given. The complete
data based on the BE97 are given in Table 14.

Diffuse-specular scattering:The numerical data on the
plane thermal creepG

*T
ch for the diffuse-specular scattering

~2.23! are available in the literature.80,91,97,102,103The results
obtained by Loyalkaet al.97 on the basis of the BE are pre-
sented in Table 14. The results obtained by Loyalka91 based
on the BGK model with the dimensionless collision fre-
quency defined by~3.54!, are given in Table 15. The data of
the papers80,102,103 coincide with those obtained by
Loyalka.91

3.4.4. Cylindrical Thermal Creep Flow

Diffuse scattering:Numerical data on the cylindrical ther-
mal creepG

*T
tb based on the BGK model assuming diffuse

scattering~2.22! were obtained by Loyalka,84 who solved the
integral equation~3.43! by the direct numerical method. His
results are presented in the second column of Table 16.
Chernyaket al.46 ~third column! solved the same equation by
the variational method. Valougeorgis and Thomas160 ~fourth

FIG. 6. Reduced flow rateG
*T
ch vs d at diffuse scattering: solid line—BGK

by Loyalka ~Ref. 89!, dashed line—BGK with recalculatedd, squares—S
model by Chernyaket al. ~Ref. 42!, circles—BE by Loyalka and Hickey
~Ref. 97!, crosses—BE by Ohwadaet al. ~Ref. 116!.

TABLE 11. Reduced flow rateG
*T
ch vs d: diffuse scattering, different methods

d

G
*T
ch

a b c d e f

0.001 1.8394 1.8289 ¯ ¯ ¯ ¯

0.01 1.2334 1.2348 ¯ 1.2470 1.2469 ¯

0.1 0.6948 0.6944 0.6949 0.7328 0.7283 0.7966
1.0 0.2950 0.2948 0.2948 0.3656 0.3653 0.3890

10.0 0.0663 0.06553 0.0660 0.09834 0.09707 0.0898

aLoyalka ~Ref. 89!, Eq. ~3.43! ~BGK!, direct numerical method.
bLoyalka ~Ref. 89!, Eq. ~3.43! ~BGK!, variational method.
cLoyalka et al. ~Ref. 102!, Eq. ~3.13! with ~3.16! ~BGK!, method of elementary solutions.
dChernyaket al. ~Ref. 42!, ~3.40! ~S model!, direct numerical method.
eChernyaket al. ~Ref. 42!, ~3.40! ~S model!, variational method.
fLoyalka and Hickey~Ref. 97!, ~3.13! with ~2.54! ~BE! direct numerical method.

TABLE 12. Reduced flow rateG
*T
ch vs d by Ohwadaet al. ~Ref. 116!: diffuse

scattering, BE

d G
*T
ch d G

*T
ch

0.0393 0.9968 0.785 0.4240
0.0524 0.9338 0.982 0.3916
0.0785 0.8484 1.31 0.3460
0.0982 0.8030 1.96 0.2838
0.131 0.7460 2.62 0.2418
0.196 0.6690 3.93 0.1870
0.262 0.6164 5.24 0.1522
0.393 0.5448 7.85 0.1106
0.524 0.4954
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column! solved the BGK equation by the method of elemen-
tary solutions. One can see that there is good agreement be-
tween all these results. Note that the data of the papers46,84,160

are presented in Table 16 implying the relation~3.20!.
Sharipov141 solved Eq.~3.13! with ~3.17! ~S model! by the

discrete velocity method. His results are presented in the fifth
column of Table 16. There is no agreement between the
BGK model solution and that based on the S model. This
disagreement was discussed in Sec. 3.4.3, where it was
pointed out that the S model supplies more reliable results.
Therefore, the complete data based on the BGK model are
not presented here. The complete data based on the S
model141 are presented in Table 17.

The results based on the BGK model and being in good
agreement with the data by Loyalka84 can be found also in
the literature.81,91,104,125,123

Diffuse-specular scattering:The results of the cylindrical
thermal creep flow for the diffuse-specular scattering~2.23!
based on the integral equation~3.43! ~BGK! are available in
the literature81,91,123 ~direct numerical solution! and in the
work125 ~variational method!. The data based on the S model
were obtained by Sharipov.141 Since the S model gives more
reliable results, the results based on the BGK model are not
presented here. We only note that:~i! There is a good agree-
ment between the results of the Refs. 81, 125, 123;~ii ! the
results of the work in Ref. 91 are erroneous.

The complete data by Sharipov141 on the cylindrical ther-
mal creepG

*T
tb obtained from the S model for the different

gas–surface interaction parametersa are given in Table 17.

3.4.5. Mechanocaloric Heat Flux

Due to the Onsager relation~3.36! the reduced mechano-
caloric heat fluxQ* P is equal to the thermal creepG* T . So,
there is no point in considering the coefficientQ* P here. We
only note that there is a difference in the profilesũxT and
q̃xP. Information on the profiles can be found in the
literature.42,80,81,97,103,104,123

3.4.6. Plane Heat Flux

Diffuse scattering:Results on the heat flux through a
channelQ

*T
ch for the diffuse scattering~2.22! are available in

the following papers: Loyalka87 solved the integral equation
~3.38! ~BGK! by the variational method; Chernyaket al.42

solved the integral equation~3.40! ~S model! by both direct
numerical and variational method; Lo and Loyalka80 solved
Eq. ~3.38! ~BGK! by the direct numerical method; and Loy-
alka and Hickey97 solved the BE by the discrete velocity
method. A comparison between these results is performed in
Table 18. One can see that there is a disagreement between
variational~second column! and direct numerical~third col-
umn! solutions of the BGK model. Most probably in the
paper87 the coefficientQ

*T
ch was calculated incorrectly. The

exact~forth column! and variational~fifth column! solutions
of the S model are in good agreement.

A comparison of the different solutions is also performed
in Fig. 7. One can see that the solution of the S model
~squares! is closer to the BE solution~crosses! than the BGK
model solution~solid line!. As well as for the thermal creep
G* T , this disagreement is a consequence of the BGK model
having the incorrect Prandtl number. The BGK model gives
more reasonable values ofQ

*T
ch , if the collision frequency

ñBGK is related with the rarefaction parameterd by ~3.54!.
The recalculated data are presented by the dashed line in Fig.
7.

Since the BGK equation gives unreliable results on the
coefficientQ

*T
ch and the results based on the S model42 are

presented very poorly, we restrict ourselves by the presenta-
tion of the complete data based on the BE97 only. The data
are given in Table 19.

Diffuse-specular scattering:The thermal flux for the
diffuse-specular scattering~2.23! is calculated by Lo and

TABLE 13. Reduced flow rateG
*T
ch vs d by Loyalka ~Ref. 89!: diffuse scat-

tering, BGK

ñBGK
d G

*T
ch

ñBGK
d G

*T
ch

0.001 0.00067 1.8394 1.5 1.0 0.2413
0.005 0.00333 1.4134 2.0 1.333 0.2064
0.01 0.00667 1.2334 2.5 1.667 0.1811
0.02 0.0133 1.0606 3.0 2.0 0.1620
0.04 0.0267 0.8958 3.5 2.33 0.1464
0.05 0.0333 0.8450 4.0 2.67 0.1340
0.06 0.04 0.8043 5.0 3.33 0.1145
0.08 0.0533 0.7418 6.0 4.0 0.1000
0.1 0.0667 0.6948 7.0 4.67 0.0888
0.2 0.133 0.5578 8.0 5.33 0.0798
0.4 0.267 0.4351 9.0 6.0 0.0725
0.5 0.333 0.3986 10.0 6.67 0.0663
0.6 0.4 0.3699 20.0 13.3 0.0361
0.8 0.533 0.3268 30.0 20.0 0.0249
1.0 0.667 0.2950 40.0 26.7 0.0191

TABLE 14. Reduced flow rateG
*T
ch vs d anda by Loyalka and Hickey~Ref.

97!: BE

d

G
*T
ch

a51 a50.75 a50.5

0.1 0.7966 1.0864 1.5632
0.25 0.6243 0.8118 1.0999
0.5 0.5036 0.6225 0.7903
0.75 0.4359 0.5193 0.6304
0.9 0.4060 0.4752 0.5646
1.0 0.3890 0.4505 0.5285
1.1 0.3737 0.4285 0.4970
1.2 0.3598 0.4089 0.4694
1.3 0.3472 0.3012 0.4448
1.4 0.3355 0.3752 0.4228
1.5 0.3248 0.3606 0.4030
2.0 0.2810 0.3027 0.3274
3.0 0.2226 0.2307 0.2393
5.0 0.1574 0.1570 0.1566
7.0 0.1212 0.1190 0.1165

10.0 0.0898 0.0871 0.0842
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Loyalka80 on the basis of the BGK equation and by Loyalka
and Hickey97 on the basis of the BE. The results of the last
paper, which are more reliable, are presented in Table 19.

3.4.7. Cylindrical Heat Flux

The cylinder thermal flux was calculated only by Lo
et al.81 on the basis of the integral equation~3.43! ~BGK! by
the direct numerical method. The results are presented in
Table 20, where the relation~3.54! has been used.

3.5. Free-Molecular Regime

In the free-molecular regime (d50) the flow rate and the
heat flux can be calculated analytically. Atd50 all kernels
in the integral equations~3.38!–~3.40! and~3.43!–~3.45! are
equal to zero and the momentsũx , q̃x are equal to the free
terms. But for the channel flow the free terms contain the
function I 0(du ỹ2 ỹ8u). From the representation~3.49! one
can see that atd→0 this function and hence the free terms
tend to infinity. As a result the bulk velocity and the heat
flow vector in the channel also tend to infinity in the free-
molecular regime. This unphysical behavior is explained by
the degenerate geometry: the channel is infinite in two direc-
tions. If we restrict the channel at least in one direction
~length or width! the bulk velocity and the heat flow vector
immediately will be finite quantities.

So, the expressions of the moments and the flow rates
through the channel given below describe only their
asymptotic behavior atd→0. From~3.38!, ~3.39!, ~3.43! and
~3.44! with the free terms for the diffuse-specular scattering
~2.23! we have

ũxP
ch5

ln d

2Ap

~22a!

a
, ũxP

tb ~r'!52
E~r'

2 !

Ap

~22a!

a
,

~3.55!

ũxT52 1
2 ũxP, q̃xP5ũxT , q̃xT5 9

4ũxP, ~3.56!

TABLE 15. Reduced flow rateG
*T
ch vs d anda by Loyalka ~Ref. 91!: BGK

ñBGK d

G
*T
ch

a50.96 a50.92 a50.88 a50.84 a50.80

0.001 0.0007 1.9752 2.1058 2.2465 2.3987 2.5638
0.01 0.0067 1.3074 1.3839 1.4659 1.5539 1.6488
0.02 0.0133 1.1196 1.1813 1.2473 1.3180 1.3940
0.03 0.02 1.0141 1.0677 1.1249 1.1861 1.2517
0.04 0.0267 0.9416 0.9897 1.0409 1.0956 1.1543
0.05 0.0333 0.8867 0.9307 0.9775 1.0275 1.0809
0.07 0.0467 0.8066 0.8447 0.8851 0.9281 0.9740
0.09 0.06 0.7489 0.7828 0.8196 0.8567 0.8973
0.1 0.0667 0.7253 0.7574 0.7914 0.8275 0.8660
0.3 0.2 0.5000 0.5165 0.5338 0.5520 0.5712
0.5 0.3333 0.4089 0.4197 0.4310 0.4428 0.4552
0.7 0.4667 0.3538 0.3615 0.3695 0.3778 0.3864
0.9 0.6 0.3152 0.3209 0.3268 0.3329 0.3392
1.0 0.6667 0.2997 0.3046 0.3098 0.3150 0.3205
1.25 0.8333 0.2681 0.2717 0.2753 0.2790 0.2829
1.5 1.0 0.2437 0.2462 0.2488 0.2515 0.2543
2.0 1.3333 0.2075 0.2088 0.2102 0.2115 0.2129
2.5 1.6667 0.1816 0.1822 0.1828 0.1834 0.1841
3.0 2.0 0.1619 0.1621 0.1622 0.1624 0.1625
3.5 2.3333 0.1463 0.1461 0.1460 0.1459 0.1457
4.0 2.6667 0.1335 0.1332 0.1329 0.1325 0.1322
5.0 3.3333 0.1138 0.1133 0.1127 0.1122 0.1117
6.0 4.0 0.0992 0.0986 0.0980 0.0974 0.0967
7.0 4.6667 0.0879 0.0873 0.0867 0.0860 0.0854
9.0 6.0 0.0716 0.0710 0.0704 0.0698 0.0691

10.0 6.6667 0.0655 0.0649 0.0643 0.0637 0.0631

TABLE 16. Reduced flow rateG
*T
tb vs d: diffuse scattering, different methods

d

G
*T
tb

a b c d

0.0001 0.7515 0.7515 0.7515 ¯

0.001 0.7467 0.7467 0.7466 0.7486
0.01 0.7179 0.7178 0.7177 0.7243
0.1 0.5976 0.5975 0.5968 0.6210
1.0 0.3220 0.3214 0.3217 0.3959

10.0 0.0687 0.0683 0.0686 0.1014

aLoyalka ~Ref. 84!, Eq. ~3.43! ~BGK!, direct numerical solution.
bChernyaket al. ~Ref. 46!, Eq. ~3.43! ~BGK!, variational method.
cValougeorgis and Thomas~Ref. 160!, Eq. ~3.13! with ~3.16! ~BGK!,
method of elementary solutions.

dSharipov ~Ref. 141!, Eq. ~3.13! with ~3.17! ~S model!, discrete velocity
method.
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where E(x) is the complete elliptic integral of the second
kind defined as

E~x!5E
0

p/2

~12x sin2 f!1/2df. ~3.57!

The flow rates and the heat fluxes~3.27!–~3.30! take the
form

G
*P
ch 52

ln d

Ap

~22a!

a
, G

*P
tb 5

8

3Ap

~22a!

a
,

~3.58!

G* T5 1
2 G* P, Q* P5G* T , Q* T5 9

4 G* P.
~3.59!

The same result can be obtained via the integral equation
systems~3.40! and ~3.45!.

3.6. Near Free-Molecular Regime

One of the methods to obtain the analytical expressions of
the flow rate and heat flux for the small values of the rar-
efaction parameterd is as follows. We use the expansion
~3.49! retaining a finite number of the terms. With the help of
this expansion we can obtain analytical expressions of the
coefficientsAi j and B im of the algebraic system~3.53!.
Then, this algebraic system can be resolved analytically.
Having the analytical expressions of the coefficientsc1m ,
c2m , c3m one easily obtains the bulk velocity~3.51! and the
heat flow vector~3.52!. Then, the flow rates and the heat
fluxes are calculated by~3.27!–~3.30!.

For the tube flow this task was done by Chernyaket al.43

Under the supposition of the diffuse scattering~2.22! they
obtained the flow rates and the heat fluxes up to the terms of
orderd2:

G
*P
tb 51.50451d ln d20.3842d20.8024d2, ~3.60!

G
*T
tb 5Q

*P
tb 50.75231d ln d10.1158d21.2036d2,

~3.61!

Q
*T
tb 53.385112.5d ln d20.4604d22.6078d2.

~3.62!

Since these expressions have a small number of the terms,
they give good precision in the very small range ofd. But
applying the method described here, one can obtain the
asymptotic formulas of the flow rates and the heat fluxes up
to any order ofd.

Note, the algebraic system~3.53! and hence the expres-
sions~3.60!–~3.62! are based on the S model.

TABLE 17. Reduced flow rateG
*T
tb vs d anda by Sharipov~Ref. 141!: S model

d

G
*T
tb

d

G
*T
tb

a51.0 a50.8 a50.6 a51.0 a50.8 a50.6

0.0005 0.7502 1.1215 1.7365 0.9 0.4092 0.4567 0.5140
0.001 0.7486 1.1166 1.7237 1.0 0.3959 0.4372 0.4865
0.005 0.7366 1.0838 1.6452 1.2 0.3721 0.4035 0.4402
0.01 0.7243 1.0530 1.5775 1.4 0.3514 0.3754 0.4029
0.02 0.7042 1.0070 1.4807 1.6 0.3330 0.3513 0.3718
0.03 0.6884 0.9719 1.4093 1.8 0.3165 0.3303 0.3456
0.04 0.6752 0.9432 1.3512 2.0 0.3016 0.3118 0.3230
0.05 0.6637 0.9186 1.3036 3.0 0.2439 0.2443 0.2445
0.06 0.6536 0.8970 1.2617 4.0 0.2042 0.2009 0.1971
0.07 0.6444 0.8778 1.2247 5.0 0.1752 0.1704 0.1651
0.08 0.6359 0.8603 1.1916 6.0 0.1531 0.1479 0.1420
0.09 0.6281 0.8444 1.1616 7.0 0.1359 0.1305 0.1245
0.1 0.6210 0.8297 1.1341 8.0 0.1220 0.1167 0.1108
0.2 0.5675 0.7244 0.9435 9.0 0.1106 0.1055 0.09979
0.3 0.5303 0.6558 0.8255 10.0 0.1014 0.09620 0.09079
0.4 0.5015 0.6050 0.7415 20.0 0.05426 0.05104 0.04746
0.5 0.4779 0.5648 0.6769 30.0 0.03685 0.03452 0.03187
0.6 0.4576 0.5315 0.6250 40.0 0.02785 0.02600 0.02388
0.7 0.4397 0.5031 0.5820 50.0 0.02212 0.02080 0.01874
0.8 0.4237 0.4784 0.5455

TABLE 18. Reduced heat fluxQ
*T
ch vs d: diffuse scattering, different methods

d

Q
*T
ch

a b c d e

0.01 5.4225 6.6742 6.7343 6.7343 ¯

0.1 3.3008 3.8460 4.0553 4.0500 3.8669
1.0 1.3180 1.4182 1.7543 1.7535 1.7846

10.0 0.1742 0.2334 0.3407 0.3402 0.3467

aLoyalka ~Ref. 87!, Eq. ~3.38! ~BGK!, direct numerical method.
bLo and Loyalka~Ref. 80!, Eq. ~3.38! ~BGK!, variational method.
cChernyaket al. ~Ref. 42!, Eq. ~3.43! ~S model!, direct numerical method.
dChernyaket al. ~Ref. 42!, Eq. ~3.43! ~S model!, variational method.
eLoyalka and Hickey~Ref. 97!, Eq. ~3.13! with ~2.54! BE, discrete velocity
method.
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3.7. Hydrodynamic Regime

In the hydrodynamic regime (d→`) the mass flow rate
can be found from the Navier–Stokes equation~2.44!. Its
solution with the stickiness boundary condition~i.e., the bulk
velocity is equal to zero on the wall! for an infinite capillary
is well known, see e.g., Refs. 12, 73, 149. The dimensional
velocity profile has the form

ux
ch~y!52

1

2m

dP

dx F S a

2D 2

2y2G ,
ux

tb~r'!52
1

4m

dP

dx
~a22r'

2 ! ~3.63!

for the channel and tube, respectively. Herer'5Ay21z2.
From ~3.63! with the help of~2.41!, ~3.11! and ~3.23! we
obtain the expression for the dimensionless velocities:

ũ xP
ch~ ỹ !52

d

2 S 1

4
2 ỹ 2D , ũ xP

tb ~ r̃'!52
d

4
~12 r̃ '

2 !,

ũxT50. ~3.64!

For the reduced flow rates~3.27! and ~3.29! we have

G
*P
ch 5

d

6
, G

*P
tb 5

d

4
, G* T50. ~3.65!

The heat flux can be easily found from Fourier’s law
~2.37!, which for the capillary flow takes the form

qx52k
dT

dx
. ~3.66!

With the help of~2.41!, ~3.11! and ~3.23! we have

q̃xP50, q̃xT52
15

8d
, ~3.67!

for both channel and tube. For the reduced heat fluxes~3.28!
and ~3.30! we obtain

Q* P50, Q* T5
3.75

d
. ~3.68!

3.8. Slip Regime of the Gas Flow

3.8.1. Definition of the Slip Coefficients

In the previous section we have obtained the flow rates
assuming the stickiness boundary condition. However, the
bulk velocity is not equal to zero on the wall because there is
a slip of the gas. The tangential velocityut of the gas near
the wall is proportional to its normal gradient and to the
longitudinal temperature gradient, i.e.,

ut5AP

]ut

]xn
1AT

]T

]xt
, ~3.69!

wherext is the coordinate tangential to the surface,xn is the
normal coordinate, andAP andAT are coefficients to be ob-

FIG. 7. Reduced heat fluxQ
*T
ch vs d at diffuse scattering: solid line—BGK

by Lo and Loyalka ~Ref. 80!, dashed line—BGK with recalculatedd,
squares—S model by Chernyaket al. ~Ref. 42!, crosses—BE by Loyalka
and Hickey~Ref. 97!.

TABLE 19. Reduced heat fluxQ
*T
ch vs d anda by Loyalka and Hickey~Ref.

97!: BE

d

Q
*T
ch

a51.0 a50.75 a50.5

0.1 3.8669 5.3371 7.7430
0.25 3.0187 3.9702 5.4179
0.5 2.3918 2.9969 3.8420
0.75 2.0333 2.4635 3.0290
0.9 1.8750 2.2355 2.6959
1.0 1.7846 2.1077 2.5136
1.1 1.7036 1.9948 2.3552
1.2 1.6305 1.8942 2.2161
1.3 1.5639 1.8038 2.0930
1.4 1.5030 1.7220 1.9832
1.5 1.4470 1.6476 1.8845
2.0 1.2217 1.3568 1.5103
3.0 0.9331 1.0044 1.0821
5.0 0.6319 0.6602 0.6903
7.0 0.4761 0.4909 0.5064

10.0 0.3467 0.3540 0.3616

TABLE 20. Reduced heat fluxQ
*T
tb vs d anda by Lo et al. ~Ref. 81!: BGK

ñBGK d

Q
*T
tb

a51.0 a50.8 a50.6

0.01 0.0067 3.2700 4.7987 7.2535
0.02 0.0133 3.1883 4.6135 6.8518
0.04 0.0267 3.0569 4.3294 6.2629
0.06 0.04 2.9485 4.1056 5.8195
0.1 0.0667 2.7703 3.7555 5.1579
0.4 0.2667 2.0146 2.4648 3.0152
0.6 0.4 1.7290 2.0428 2.4059
1.0 0.6667 1.3560 1.5356 1.7285
2.0 1.333 0.8849 0.9554 1.0227
3.0 2.0 0.6563 0.6939 0.7271
4.0 2.667 0.5210 0.5445 0.5640
5.0 3.333 0.4318 0.4478 0.4605
8.0 5.333 0.2867 0.2918 0.2969

10.0 6.667 0.2335 0.2367 0.2400
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tained with the help of the kinetic equation. Here, it is more
convenient to introduce the dimensionless slip coefficients as
follows:

sP5
Ap

2l
AP, sT5

1

l S pmT

2kB
D 1/2

AT . ~3.70!

Taking into account the slip boundary condition~3.69! we
have the following velocity profiles:

ux
ch52

1

2m

dP

dx F S a

2D 2

2y21aAPG1AT

dT

dx
, ~3.71!

ux
tb52

1

4m

dP

dx
~a22r'

2 1aAP!1AT

dT

dx
. ~3.72!

From ~3.71! and ~3.72! with the help of~3.11!, ~3.23! and
~3.70! we obtain

ũ xP
ch52

d

2 S 1

4
2 ỹ 2D2

sP

2
, ũ xT

ch5
sT

2d
, ~3.73!

ũ xP
tb 52

d

4
~12 r̃ '

2 !2
sP

2
, ũ xT

tb 5
sT

2d
. ~3.74!

Then, the reduced flow rates take the form

G
*P
ch 5

d

6
1sP, G

*T
ch 5

sT

d
, ~3.75!

G
*P
tb 5

d

4
1sP, G

*T
tb 5

sT

d
. ~3.76!

3.8.2. Viscous Slip Coefficient

To obtain the viscous slip coefficientsP one has to con-
sider a stationary rarefied gas flow in the semi-infinite space
xn>0 over an infinite plate having a constant temperatureT
and fixed atxn50. The behavior of the gas is described by
the linearized kinetic equation. At the surface (xn50) the
perturbation functionh satisfies the boundary condition
~2.18!. At infinity ( xn→`) it is assumed that the perturba-
tion function coincides with the Chapman–Enskog solution
with the tangential bulk velocity having a small normal gra-
dient.

The detailed technique of solution of this problem and
numerical data on the coefficientsP can be found in the
literature.6,23,29,34,70,86,88,90,96,98,100,115,155,167,170,177Here, we
consider the main rigorous results.

Diffuse scattering:Albertoni et al.6 applying the method
of elementary solutions to the BGK model and assuming the
diffuse scattering~2.22!, obtained

sP51.016. ~3.77!

This can be considered as the most exact results based on the
BGK model.

Loyalka and Ferziger100 and Cercignaniet al.29 calculated
the coefficientsP using other kinetic models. They found
that the slip coefficient varies in the range

0.9624<sP<1.0185, ~3.78!

i.e., it is only slightly model dependent.
The direct numerical solution of the BE for rigid spheres

obtained by Loyalka and Hickey96 and by Ohwadaet al.115

give the following valuesb

sP50.9845 and sP50.9849, ~3.79!

respectively. One can see that agreement between these re-
sults is perfect. So, the valuesP50.985 can be considered as
the most reliable one for perfect accommodation.

Diffuse-specular scattering:Applying the variational
method to the BE of Maxwellian molecules and assuming
the diffuse scattering~2.23! Loyalka83 obtained the following
expression for the slip coefficient:

sP~a!5
22a

a
@sP~1!20.1211~12a!#. ~3.80!

The same results were obtained by him in the paper86 using
an approximate method. The same expression~3.80! was
also obtained by Suetin and Chernyak155 from the S model
equation. Zhdanov and Zaznoba176 obtained this expression
from the BE by the moment method.

Exact numerical calculations of the slip coefficientsP

based on the BGK equation over the whole range ofa were
carried out by Loyalkaet al.101 Wakabayashiet al.163 per-
formed a numerical calculation of the BE by the discrete
velocity method. In Table 21 these results andsP(a) calcu-
lated by ~3.80! with sP(1)51.016 are presented. It can be
seen that there is good agreement between Eq.~3.80! and the
numerical data based on the BGK model.101 The values ofsP

obtained from the BE163 differ very slightly from the BGK
solution. Thus, Eq.~3.80! can be successfully used in prac-
tical calculations.

bThe value given by Ohwadaet al. ~Ref. 115! must be multiplied byp/4.

TABLE 21. Viscous slip coefficientsP vs a

a

sP

a b c

0.1 17.1031 17.0058 17.2332
0.2 8.2249 8.1524 8.2721
0.3 5.2551 5.1928 5.2770
0.4 3.7626 3.7069 3.7734
0.5 2.8612 2.8107 2.8664
0.6 2.2554 2.2093 2.2576
0.7 1.8187 1.7766 1.8194
0.8 1.4877 1.4494 1.4877
0.9 1.2272 1.1925 1.2270
1.0 1.0162 0.9849 1.0160

aLoyalka et al. ~Ref. 101!, BGK.
bWakabayashiet al. ~Ref. 163!, BE.
cEquation~3.80!.
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3.8.3. Thermal Slip Coefficient

To obtain the thermal slip coefficientsT one has to con-
sider a stationary rarefied gas flow in the semi-infinite space
xn>0 over an infinite plate fixed atxn50 and having a
linear temperature distribution

Tw~xt!5T0~11jwTxt!, ~3.81!

wherejwT is a given constant. This temperature distribution
is established in the gas over the whole space occupied by
him.

At the surface (xn50) the perturbation functionh satisfies
the boundary condition~2.18!. At infinity ( xn→`) the func-
tion h tends to the Chapman–Enskog solution, correspond-
ing to the heat transfer in the gas by a constant temperature
gradient.

Two points should be noted here.

~i! First, sometimes in the literature the temperature jump
coefficient is called ‘‘the temperature slip coefficient’’
~see, e.g., Refs. 70, 83!. This could cause confusion,
because one may think that ‘‘the temperature slip co-
efficient’’ is the same as the thermal slip coefficient.
Here, we will not consider the temperature jump co-
efficient. We only point out that to obtain it one has to
consider a temperature gradient, which isnormal to
the surface.

~ii ! Second, since the BGK model has the Prandtl number
equal to unity rather than 2/3, to computesT we must
be careful in the choice of the collision frequencyn in
~2.45!. The appropriate choice is that which leads to
the correct heat conduction coefficient, i.e., the ex-
pression~2.47!. Thus, all results based on the BGK
model presented below will imply this choice of the
frequencyn; even an original work uses the expres-
sion ~2.46!.

The detailed calculation ofsT and numerical data can be
found in the literature.54,85,88,92–94,101,115,117,150,155,169,172,173

Let us analyze the main rigorous results.
Diffuse scattering:An accurate numerical calculations

based on the BGK model with the diffuse scattering~2.22!
were performed by Sone,150 Williams,169 Loyalka94,101 and
Onishi.117 All of them obtained the same result, namely

sT5 3
20.76651.149. ~3.82!

The variational method applied to both the BGK
model85,88,92and the S model155 gave the following value:

sT59/851.125. ~3.83!

The same value has been obtained in the work85 from the BE
for Maxwellian molecules. But the model equation with a
collision frequency appropriate to rigid sphere molecules85

gives the value

sT50.9876. ~3.84!

The direct numerical solution of the BE for rigid spheres
obtained by Loyalka93 and by Ohwadaet al.115 gave the fol-
lowing values in our notations

sT5
3

2
0.672551.009, and sT5

p

2
0.64651.015,

~3.85!

respectively. One can see that there is a fine agreement be-
tween these two results. So, the valuesT51.01 can be con-
sidered as the most reliable one for the diffuse scattering.

Diffuse-specular scattering:Based on the BGK equation
with the diffuse-specular scattering~2.23! Loyalka and
Cipolla94 applying the method of elementary solutions ob-
tained the expression

sT50.7510.3993a. ~3.86!

The variational method applied to the BGK and S
models88,94,155gives the following expression:

sT50.7510.375a. ~3.87!

The same expression was obtained by Zhdanov and
Zaznoba176 from the BE by the moment method.

Loyalka et al.101 solved the BGK model by the integro-
moment method. The integral equation was solved by the
exact numerical method. Onishi117 also obtained the integral
equation based on the BGK model. Then, the equation was
solved by the variational method. Wakabayashiet al.163

solved the BE by the discrete velocity method.
In Table 22 numerical results of the works101,117,163are

presented and compared with the expressions~3.86! and
~3.87!. It can be seen that the expression~3.86! describes
finely the numerical results based on the BGK model.101,117

The disagreement between the BE solution and that based on
the BGK model varies from 3% fora50 to 12% for a
51.

3.9. Near Hydrodynamic Regime

In the two previous sections we obtained the expansions of
the flow rates and heat fluxes for the large rarefaction param-

TABLE 22. Thermal slip coefficientsT vs a

a

sT

a b c d e

0.0 0.7500 0.7500 0.7755 0.7500 0.7500
0.1 0.7925 0.7925 ¯ 0.7899 0.7875
0.2 0.8344 0.8344 0.8286 0.8299 0.8250
0.3 0.8758 0.8757 ¯ 0.8698 0.8625
0.4 0.9165 0.9164 0.8789 0.9097 0.9000
0.5 0.9567 0.9565 ¯ 0.9497 0.9375
0.6 0.9963 0.9961 0.9266 0.9896 0.9750
0.7 1.0354 1.0352 ¯ 1.0295 1.0125
0.8 1.0739 1.0737 0.9720 1.0694 1.0500
0.9 1.1119 1.1118 ¯ 1.1094 1.0875
1.0 1.1495 1.1493 1.0152 1.1493 1.1250

aLoyalka et al. ~Ref. 101!, Integral equation based on BGK, direct numeri-
cal solution.

bOnishi ~Ref. 117!, Integral equation based on BGK, variational method.
cWakabayashiet al. ~Ref. 163!, BE, discrete velocity method.
dEquation~3.86!.
eEquation~3.87!.
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eter d. The approach based on the Navier–Stokes equation
with the slip boundary condition allows us to obtain the
terms of the orderO(d) andO(1) for G* P and the terms of
the orderO(1/d) for G* T . But using the approach described
in Sec. 3.6 we may find more terms in the expansion. The
unique difference from the approach for the smalld is that:
the expansion~3.50! of the special functionsI n is used. With
the help of this expansion we obtain the analytical expres-
sions of the coefficientsAi j and B im of the system~3.53!.
Then, we do the same as in Sec. 3.6 up to the analytical
expressions for the flow rates and for the heat fluxes.

The method of elementary solutions based on the BGK
model also allows us to obtain the analytical expressions of
the flow rates and the heat fluxes. The following asymptotic
formula (d→`) of the plane Poiseuille flowG

*P
ch for the

diffuse scattering~2.22! was obtained by Williams168

G
*P
ch 5

d

6
11.01621

1.0653

d
2

2.1354

d2 . ~3.88!

Loyalka and Hickey98 using the BE obtained the coeffi-
cientsG

*P
ch , G

*T
ch , Q

*P
ch andQ

*T
ch for the diffuse scattering:

G
*P
ch 5

d

6
10.97901

0.7089

d
2

1.0872

d2 , ~3.89!

G
*T
ch 5Q

*P
ch 5

0.9924

d
2

1.3284

d2 , ~3.90!

Q
*T
ch 5

3.7839

d
2

3.5508

d2 . ~3.91!

They also provide the asymptotic formulas of these coeffi-
cients for the diffuse-specular scattering ata50.5 and 0.1.
Comparing~3.88! and~3.89! one can see that the coefficients
of the asymptotic formulas essentially depend on the kinetic
model equation.

The asymptotic formula (d→`) of the cylindrical Poi-
seuille flow G

*P
tb for the diffuse scattering~2.22! was ob-

tained by Lang and Loyalka74 applying the BGK equation

G
*P
tb 5

d

4
11.01621

0.5490

d
2

0.607

d2 . ~3.92!

Chernyaket al.43 applying the S model obtained the fol-
lowing expressions of the coefficientsG

* P
tb , G

* T
tb , Q

* P
tb and

Q
* T
tb for the diffuse scattering:

G
*P
tb 5

d

4
11.00731

0.6712

d
2

0.8657

d2 , ~3.93!

G
*T
tb 5Q

*P
tb 5

1.125

d
2

1.4687

d 2 1
0.6704

d 3 2
2.3424

d 4 ,

~3.94!

Q
*T
tb 5

3.75

d
2

3.8085

d 2 1
1.8518

d 3 2
2.3593

d 4 . ~3.95!

3.10. Arbitrary Drops of the Pressure and
Temperature

3.10.1. Main Relations

In this section, we realize the second stage of the problem
formulated in Sec. 3.1, viz. we obtain the mass flow rate as a
function of the pressuresPI andPII and the temperaturesTI

andTII . For this purpose it is better to introduce two rarefac-
tion parameters:

d I5
Ap

2

a

l I
5

aPI

m~TI!
S m

2kBTI
D 1/2

,

d II5
Ap

2

a

l II
5

aPII

m~TII !
S m

2kBTII
D 1/2

, ~3.96!

wherel I andl II are the mean free paths in the left and right
containers, respectively. Here, Eq.~2.3! has been used. These
rarefaction parameters can be related each with other if the
intermolecular interaction law is given. Assuming the mol-
ecules to be hard spheres, from~2.40! we obtain l}1/n
}T/P. Then, it is easily obtained

d I5
PI

PII

TII

TI
d II . ~3.97!

Under the supposition of the small drops,

DP/PI!1, DT/TI!1, ~3.98!

the variation of the rarefaction parameterd along the capil-
lary is negligible small and we may assume

d I5d II5d. ~3.99!

In this case the mass flow rates and the heat fluxes are
easily calculated via the coefficientsG* andQ* using their
representations~3.31!.

Under the condition~3.98! the TPD exponentg can be
calculated assumingG* 50 in ~3.31!, where the gradients
are calculated as

jP5
~PII2PI!

LPI
, jT5

~TII2TI!

LTI
. ~3.100!

Then, the coefficientg is easily obtained

g5
G* T

G* P
. ~3.101!

If the differencesDP/PI andDT/TI are large, the values
of d I andd II may be different so significantly that the regime
of the gas flow can vary from the hydrodynamic to free-
molecular one along the capillary. In this case the rarefaction
parameterd varies along the capillary from the valued I to
the valued II . A priori we do not know the functiond( x̃ ).
Below a differential equation for this function will be ob-
tained. Since numerical data are available only for the tube
flow we will not consider the channel flow here.

Let us introduce the new reduced flow rate as

Gtb5
L

pa2PI
S 2kBTI

m D 1/2

Ṁ tb. ~3.102!
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Note that unlikeG
*
tb , this flow rateGtb does not vary along

the capillary, but it is constant. If we expressṀ tb from ~3.26!
and substitute it into~3.102!, we obtain

Gtb5
LP

T 1/2G
*
tb~d~ x̃ !!, P ~ x̃ !5

P~ x̃!

PI
, T ~ x̃ !5

T~ x̃!

TI
.

~3.103!

In Sec. 3.1. it was shown that under the conditionL@1 the
pressure and temperature gradients are small at any ratios
PI /PII and TI /TII . So, G

*
tb can be split into two parts as

~3.31!. Taking into account~3.3!, ~3.10! and the definitions
of P andT ~3.103! we have

Gtb5
LP

T 1/2 FG
* T
tb ~d!

1

T

dT

dx̃
2G

*P
tb ~d!

1

P

dP

dx̃
G .

~3.104!

With the help of~2.39! and ~3.37! we may related( x̃) with
P andT as

d~ x̃!5d I

P ~ x̃!

T ~ x̃!
. ~3.105!

This implies the use of the hard sphere model for the mol-
ecules. Using this relation the differential equation is easily
obtained for the functiond( x̃)

dd

dx̃
5dFG* T~d!

G* P~d!
21G 1

T

dT

dx̃
2

d I

LT 1/2

Gtb

G
* P
tb ~d!

~3.106!

with the boundary condition as:d(2L/2)5d I . In this equa-
tion Gtb is a parameter and we have to fitGtb so asd would
be equal tod II at x̃5L/2.

To solve the differential equation~3.106! we need to know
the temperature distributionT ( x̃) along the capillary. Since
the thermal conductivity of the capillary wall is significantly
larger than the conductivity of the gas, the temperature dis-

tribution is determined by the thermal property of the capil-
lary and must be calculated independently of the gas flow
problem. Below some particular temperature distributions
will be considered.

3.10.2. Isothermal Flow

First, let us consider the isothermal flow, i.e.,TI5TII and
T ( x̃)51. In this case Eq.~3.106! is reduced to

G
*P
tb ~d!dd52

d I

L
Gtbdx̃, ~3.107!

which is easily integrated

Gtb52
1

d I
E

d I

d II
G

*P
tb ~d!dd. ~3.108!

Sharipov and Seleznev145 performed this integration using
the data of Table 17. Their results are presented in Table 23
where the following coefficient is introduced

GDP
tb (dI ,d II)52

PIG
tb

~PII2PI!
, ~3.109!

which satisfies the condition

lim
dII→dI

GDP
tb ~dI ,dII !5G

*P
tb ~d I!. ~3.110!

Analyzing the data of Table 23 we conclude that the for-
mula

GDP
tb ~dI ,dII!5G

*P
tb S dI1dII

2 D ~3.111!

can be successfully used to calculate the mass flow rateGDP
tb

at any pressure difference if and only ifTI5TII .

TABLE 24. Reduced flow rateGDT
tb vs d I anda at TII /TI53.8 by Sharipov~Ref. 141!

d I

GDT
tb

d I

GDT
tb

a51 a50.8 a50.6 a51 a50.8 a50.6

0.01 0.9489 1.392 2.107 0.8 0.6054 0.7244 0.8813
0.02 0.9299 1.347 2.008 0.9 0.5877 0.6963 0.8381
0.03 0.9139 1.310 1.932 1.0 0.5716 0.6712 0.8001
0.04 0.9001 1.280 1.869 2.0 0.4582 0.5070 0.5662
0.05 0.8878 1.253 1.816 3.0 0.3884 0.4158 0.4476
0.06 0.8768 1.229 1.769 4.0 0.3389 0.3549 0.3728
0.07 0.8667 1.208 1.727 5.0 0.3013 0.3104 0.3204
0.08 0.8573 1.188 1.689 6.0 0.2714 0.2763 0.2814
0.09 0.8487 1.170 1.654 7.0 0.2471 0.2492 0.2511
0.1 0.8405 1.153 1.622 8.0 0.2268 0.2270 0.2268
0.2 0.7788 1.031 1.395 9.0 0.2096 0.2084 0.2067
0.3 0.7351 0.9480 1.249 10.0 0.1948 0.1926 0.1899
0.4 0.7006 0.8854 1.142 20.0 0.1139 0.1096 0.1048
0.5 0.6717 0.8348 1.058 30.0 0.08022 0.07637 0.07217
0.6 0.6468 0.7923 0.9885 40.0 0.06181 0.05852 0.05495
0.7 0.6249 0.7560 0.9307 50.0 0.05017 0.04735 0.04423
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3.10.3. Isobaric Flow

Let us consider the isobaric flow, i.e., whenPI5PII . The
gas flow is caused only by the temperature drop. In this case
the differential equation ~3.106! cannot be reduced.
Sharipov141 solved the differential equation~3.106! using the
data of Tables 7, 10 and 17. The temperature ratio was taken
as TII /TI5293/77.253.8. These values usually are met in
practice and correspond to the room temperature and to the
temperature of liquid nitrogen, respectively.

The calculations were carried out with two temperature
distribution T ( x̃). It was found that the mass flowGtb es-
sentially depends on this distribution. This means that Eq.
~3.106! must be solved anew for every given functionT ( x̃).
If the thermal conductivity does not vary along the capillary,
the temperature distribution is linear, i.e.,

T ~ x̃!511S TII

TI
21D x̃

L
. ~3.112!

The numerical data for this distribution are presented in
Table 24 where the coefficientGDT

tb is introduced:

GDT
tb 5

TIG
tb

~TII2TI!
, ~3.113!

which satisfies the condition

lim
dII→dI

GDT
tb ~dI ,dII !5G

*T
tb ~dI!. ~3.114!

Here, it is impossible to offer some simple formula like
~3.111!.

It should be note that one cannot calculate the mass flow
rateGtb as the linear combination ofGDP

tb andGDT
tb

Gtb52GDP
tb PII2PI

PI
1GDT

tb TII2TI

TI
. ~3.115!

This is valid only at the small pressure and temperature
drops.

3.10.4. Thermomolecular Pressure Difference

To calculate the TPD exponentg we assume that the mass
flow rate through the tube vanishes, i.e.,Gtb50. Then from
~3.104! for every cross section we have

G
*P
tb ~d!

1

P

dP

dx̃
5G

*T
tb ~d!

1

T

dT

dx̃
. ~3.116!

With the help of~3.105! the last equation is reduced to

dP

dT
5

P G
*T
tb ~d I P /T !

T G
*P
tb ~d I P /T !

. ~3.117!

To obtain the TPD exponentg we have to solve this differ-
ential equation consideringP as a function ofT with the
boundary condition:P 51 at T 51. When the function
P ~T ! is known, the pressure ratio, which is established in
the stationary state, is calculated asPII /PI5P (TII /TI).
Then the exponentg is found from~1.5! as

g5
ln~PII /PI!

ln~TII /TI!
. ~3.118!

It should be noted that the functionP ~T ! is not determined
by the temperature distributionT ( x̃) along the tube. There-
fore, the exponentg depends only on the temperature ratio
and on the rarefaction parameterd I .

Equation~3.117! was solved by Sharipov141 using the data
of Tables 7, 10 and 17 for the temperature ratioTII /TI

53.8. The numerical results are given in Table 25. Here it is
also impossible to offer some simple formula like~3.111!.
The exponentg must be calculated anew for every given
ratio TII /TI .

3.11. Applicability to Polyatomic Gases

Numerical results on the capillary flow of polyatomic
gases can be found in the literature.40,41,80,103,104Comparing
these results with the data presented here we conclude that

TABLE 25. TPD exponentg vs d I anda at TII /TI53.8 by Sharipov~Ref. 141!

d I

g

d I

g

a51 a50.8 a50.6 a51 a50.8 a50.6

0.01 0.4921 0.4862 0.4789 0.8 0.3381 0.2967 0.2525
0.02 0.4857 0.4764 0.4653 0.9 0.3276 0.2860 0.2416
0.03 0.4802 0.4684 0.4544 1.0 0.3179 0.2761 0.2317
0.04 0.4754 0.4615 0.4452 2.0 0.2454 0.2067 0.1664
0.05 0.4710 0.4554 0.4371 3.0 0.1986 0.1650 0.1301
0.06 0.4670 0.4498 0.4298 4.0 0.1652 0.1362 0.1063
0.07 0.4633 0.4447 0.4232 5.0 0.1401 0.1151 0.08927
0.08 0.4598 0.4399 0.4171 6.0 0.1205 0.09892 0.07649
0.09 0.4564 0.4355 0.4114 7.0 0.1050 0.08612 0.06653
0.1 0.4532 0.4312 0.4061 8.0 0.09225 0.07573 0.05852
0.2 0.4273 0.3981 0.3653 9.0 0.08173 0.06716 0.05194
0.3 0.4071 0.3734 0.3362 10.0 0.07295 0.06003 0.04649
0.4 0.3899 0.3533 0.3133 20.0 0.03039 0.02551 0.02023
0.5 0.3749 0.3364 0.2945 30.0 0.01653 0.01411 0.01145
0.6 0.3615 0.3216 0.2786 40.0 0.01035 0.008950 0.007383
0.7 0.3493 0.3085 0.2648 50.0 0.007066 0.006176 0.005162
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only the Poiseuille flow, i.e., the coefficientG* P is very
slightly affected by the internal structure of molecules. All
other coefficientsG* T , Q* P andQ* T for polyatomic gases
essentially differ from those for monatomic gas. So, the nu-
merical data presented in Tables 1–10, 21, and 23 can be
successfully applied to any gas including a polyatomic one.
The data given in Tables 11–20, 22, 24, and 25 can be ap-
plied to monatomic gases only.

4. Gas Flow Through Slits and Orifices

4.1. Remarks

In the present section we consider the gas flow through a
capillary with the length equal to zero,l 50. This means that
the containers are separated by an infinitesimally thin parti-
tion having a slit or an orifice. The sketch of the flow and the
coordinates are given in Fig. 2. This type of rarefied gas
flows is very difficult for numerical calculations. According
to the general statement of the problem the containers are
very large, therefore a numerical grid must cover a suffi-
ciently large region in the containers. An estimate shows that
to reach a reasonable precision of the calculations, the region
size must be many times~about 40! larger than the mean free
path, while the increment of the numerical grid must be
smaller than the mean free path. Thus, unlike the one-
dimensional flow considered in the previous section, the nu-
merical scheme for the slit/orifice flows always has a large
number of grid points. That is why there are very few rigor-
ous results on the gas flow through slits and orifices.

Unfortunately, the majority of papers48,75,77,131,161,162on
this topic present the experimental and theoretical results
only in figures. This form of the result presentation gives
only a qualitative behavior of the flow rates, which is usually
known.

A number of papers75,82,111,129,152,171offered asymptotic
formulas for the mass flow rate near the free-molecular re-
gime (d!1). But there is no agreement between them.
Moreover, these formulas work for very small values of the
rarefaction parameter. Therefore, they also give only quali-
tative behavior of the flow rate and are useless in practice.

Here we consider only papers providing the tabulated nu-
merical data on the slit/orifice gas flow in the large range of
the Knudsen number. The mass flow rate will be given as a
function of the two rarefaction parametersd I andd II defined
by ~3.96!. The heat flux will not be considered here. The
reader interested in the heat flux through a slit can find the
corresponding data in Ref. 142.

4.2. Free-Molecular Regime

In the free-molecular regime (dI5dII50) the mass flow
rate can be easily calculated because the distribution function
is Maxwellian~2.30! with the different number densities and
temperatures in the two velocity semi-spaces:vx,0 and
vx.0.

4.2.1. Outflow to Vacuum

If the pressure ratio is very large, i.e.,PI /PII→`, we may
consider that there is only the gas flow from the left con-
tainer to the right one. The bulk velocity in the orifice/slit
section can be calculated directly by~2.5!. Regarding that in
the orifice/slit sectionn5nI/2 and forvx,0 the distribution
function is zero, we have

ux5
1

~nI/2!
E

vx.0
f M~nI ,TI,0!vxdv

52S m

2pkBTI
D 3/2E

vx.0
expS 2

mv2

2kBTI
D vxdv

5A2kBTI

pm
5

1

2
^v& I , ~4.1!

where^v& I is the mean thermal molecular velocity~2.42! in
the left container. The mass flow rate takes the form

for slit

Ṁ fm
sl 5

nI

2
m a ux5

1

4
nI m â v& I5aPIS m

2pkBTI
D 1/2

,

~4.2!

for orifice

Ṁ fm
or 5

nI

2
mpa2ux5

1

4
nI m pa2^v& I5a2PIS pm

2kBTI
D 1/2

.

~4.3!

4.2.2. Arbitrary Drop of the Pressure

If the pressure in the right container is not so small as to
neglect it, we may consider that there are two contrary flows
of gas which do not interact each with other. So, the total
mass flow rate can be calculated as the difference of the two
contrary ones:

for slit

Ṁ fm
sl 5aS m

2pkB
D 1/2S PI

ATI

2
PII

ATII
D , ~4.4!

for orifice

Ṁ fm
or 5a2S pm

2kB
D 1/2S PI

ATI

2
PII

ATII
D . ~4.5!

In the case of small pressure and temperature drops

DP

PI
!1,

DT

TI
!1, ~4.6!

we have

Ṁ fm
sl 52aPIS m

2pkBTI
D 1/2S DP

PI
2

1

2

DT

TI
D , ~4.7!

Ṁ fm
or 52a2PIS pm

2kBTI
D 1/2S DP

PI
2

1

2

DT

TI
D . ~4.8!
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4.3. Transition Regime

4.3.1. Reduced Flow Rates

Numerical data on the slit/orifice flow in the transition
regime will be presented in terms of the reduced flow rate
defined as

G sl5
Ṁ sl

aPI
S 2pkBTI

m D 1/2

, G or5
Ṁor

a2PI
S 2kBTI

pm D 1/2

~4.9!

for slit and orifice, respectively. In the case of the small
pressure and temperature difference~4.6! the reduced flow
rateG can be decomposed asc

G 52G P

DP

PI
1G T

DT

2TI
. ~4.10!

From ~4.7!–~4.9! one can see that in the free molecular re-
gime (dI5dII50) the introduced coefficientsG P andG T are
equal to unity. It should be noted that these coefficients have
been introduced so as their relation with the rarefaction pa-
rametersd I and d II does not contain any specific character-
istic of gas. So, representing theoretical data onG P andG T it
is not necessary to specify the gas.

4.3.2. Isothermal Flow Through a Slit

Numerical calculations of the isothermal (TII5TI) gas
flow through a slit caused by the small pressure drop
(DP/PI!1), i.e., the coefficientG P

sl , was carried out by

Hasegawa and Sone.61 They applied the integro-moment
method to the linearized BGK model~2.67! and assumed the
diffuse scattering~2.22! on the surface. Sharipov140,142 cal-
culated the same coefficientG P

sl applying the optimized dis-
crete velocity method to the linearized BGK model~2.67!
and to the linearized S model~2.68! assuming the diffuse-
specular~2.23! gas–surface interaction.

The data from the papers61,140,142are presented in Table 26
where the coefficientG P

sl is given as a function of the pa-
rameterd I . The values of the other parameterd II are not
indicated, because under the conditionsDP/PI!1 and
TII5TI we havedII5dI . One can see that ata51 ~diffuse
scattering! there is good agreement between the results ob-
tained from the different equations and by the different meth-
ods. A comparison of the flow rate fora51 with that for
a50 shows that the difference ofG P

sl does not exceed 3%.
Regarding that in practice the coefficienta is close to unity
and rarely reaches the value 0.5, we may consider that the
coefficientG P

sl does not depend ona.
The following formulas interpolating the numerical data

on G P
sl were offered by Sharipov:140

G P
sl512~0.2439lgd I20.3833!d I

2~0.0338lgd I20.055!d I
2, d I<8,

~4.11!

G P
sl5

p3/2

16
d I2

4.449225.17lgd I

d I

1
138.72238.3lgd I

d I
2 , d I>8. ~4.12!

The formulas cover the entire range of the rarefaction
parameterd I and can be used for anya.

cIf the superscripts sl and or are omitted the corresponding expression is
valid for both slit and orifice.

TABLE 26. Reduced flow rateG P
sl vs d I anda

d I

G P
sl

a b c

a50 a50.5 a51 a50.5 a51 a51

0.01 1.009 1.009 1.009 ¯ ¯ ¯

0.02 1.017 1.017 1.017 ¯ ¯ ¯

0.04 1.029 1.030 1.030 1.036 1.036 ¯

0.08 1.052 1.054 1.055 1.061 1.062 ¯

0.1 1.061 1.064 1.066 1.072 1.074 ¯

0.25 1.126 1.134 1.138 ¯ ¯ 1.1370
0.4 1.183 1.196 1.203 1.212 1.219 ¯

0.5 1.220 1.237 1.244 ¯ ¯ 1.2474
0.8 1.328 1.351 1.361 1.371 1.383 ¯

1.0 1.398 1.426 1.438 1.449 1.462 1.4396
2.0 1.753 1.786 1.801 1.811 1.831 1.8002
4.0 2.445 2.484 2.500 2.504 2.533 2.4814
8.0 3.819 3.858 3.872 ¯ ¯ 3.7827

10.0 4.506 4.546 4.556 4.556 4.590 ¯

15.0 6.218 6.248 6.255 ¯ ¯ ¯

20.0 7.934 7.950 7.955 7.957 7.988 ¯

30.0 11.31 11.31 11.30 ¯ ¯ ¯

40.0 14.65 14.66 14.66 ¯ ¯ ¯

aSharipov~Ref. 140!, BGK, discrete velocity method.
bSharipov~Ref. 142!, S model, discrete velocity method.
cHasegawa and Sone~Ref. 61!, BGK, integro-moment method.
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4.3.3. Isothermal Flow Through an Orifice

There is no theoretical data on the coefficientG P
or in the

transition regime. Below its empirical formulas are given.
Small pressure drop:Borisov et al.18 carried out a set of

experiments with various gases~He, Ne, Ar, Kr, Xe, H2 and
N2! measuring the flow rate caused by the small pressure
drop ~DP/PI!1 andTII5TI!. As is known the light gases
such as He and Ne have the gas–surface interaction param-
etera less than unity even for a contaminated surface, while
the heavy gases such as Kr and Xe are perfectly accommo-
dated on the surface. However, the difference between the
flow rates of these gases was within 0.3%. This is one more
confirmation that the mass flow rate through a slit/orifice
caused by the pressure drop does not depend on the gas–
surface interaction law.

By the least-square method Borisovet al.18 obtained the
following empirical formula:

G P
or5110.342d I , ~4.13!

which is valid for d I,50. In the ranged I.50 the results
based on the Stokes equation~see Sec. 4.4.1! can be used.

Large pressure drop:Fujimoto and Usami59 measured the
mass flow rate through a short tube at the large pressure drop
(PI@PII). Under this condition we assume thatd II50. The
gas used by them was air. The length-to-radius ratio varied in
the range from 0.05 to 25.4. If we extrapolate the empirical
formula offered by them to the zero length, we obtain

G or511
0.473310.6005/Ad I

114.559/d I13.094/d I
2 . ~4.14!

This formula is valid in the ranged I,11.

4.3.4. Nonisothermal Flow Through a Slit

The gas flow caused by the small temperature drop
(DT/TI!1 andPI5PII!, i.e., the coefficientG T

sl , was cal-
culated by Sharipov142 using the S model~2.68!, which was
solved by the discrete velocity method. The results are pre-
sented in Table 27 where the coefficientG T

sl is given as a
function of d I . Since at the small temperature difference we
haved II5d I , the values of the second parameterd II are not
indicated. One can see that unlikeG P

sl , the coefficientG T
sl

depends on the gas–surface interaction parametera.

4.3.5. Thermomolecular Pressure Difference

If a small temperature difference between the containers is
maintained, a small pressure difference will be established.
In this case the TPD exponentg can be expressed in terms of
the coefficientsG P andG T . Assuming the total mass flowG
in Eq. ~4.10! is equal to zero and regarding the smallness of
the pressure and temperature drops we obtain

g5
G T

2G P
. ~4.15!

Thus, with the help of Tables 26 and 27 one can easily cal-
culate the exponentg.

Since in the free-molecular regime both coefficientsG P

and G T are equal to unity, the exponentg51/2 at
d I5d II50. This is the well known result of the kinetic theory
of gases.

4.4. Hydrodynamic Regime

4.4.1. Small Pressure Drop

A rigorous analytical solution in the hydrodynamic regime
~d I@1 and d II@1! is available only for the isothermal
gas flow (TI5TII) caused by the small pressure drop
(DP/PI!1). Under these suppositions the inertial terms in
the Navier–Stokes equation~2.44! can be omitted. More-
over, the gas can be considered as incompressible. Finally,
we obtain the so-called Stokes equations

mDu5¹P, ¹–u50. ~4.16!

This equation system was solved by Roscoe128 for the flow
through an elliptic aperture. Then, the solution was repeated
by Hasimoto.62

Slit flow: For the slit flow the solution of the system~4.16!
reads

ux52S DP a

8m D jA~12h2!3

j22h2 , ~4.17!

uy52sign~x!sign~y!S DP a

8m D hA~j221!~12h2!

j22h2 ,

~4.18!

P5PI1
DP

2 F11sign~x!
jAj221

j22h2 G , ~4.19!

where the curvilinear coordinates~j,h! are related with the
Cartesian (x,y) as

x2

j221
1

y2

j2 5
a2

4
,

x2

h221
1

y2

h2 5
a2

4
, 0<h<1<j.

~4.20!

The mass flow ratesṀ sl is easily obtained

TABLE 27. Reduced flow rateG T
sl vs d I anda by Sharipov~Ref. 142!

d I

G T
sl

a50.5 a51

0.04 0.9940 0.9968
0.08 0.9819 0.9883
0.1 0.9756 0.9841
0.2 0.9458 0.9642
0.4 0.8976 0.9309
0.8 0.8238 0.8756
1.0 0.8011 0.8586
2.0 0.6991 0.7728
4.0 0.5727 0.6535

10.0 0.3914 0.4621
20.0 0.2814 0.3384
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Ṁ slud→`5nImE
2a/2

a/2

ux~0,y!dy52
pnIma2DP

32m
.

~4.21!

With the help of~3.96!, ~4.9! and ~4.10! the dimensionless
flow rateG P

sl is obtained as

G P
sl5

p3/2

16
d I50.348d I . ~4.22!

Orifice flow: For the stationary axisymmetric gas flow the
solution of the system~4.16! reads

ux52S DP a

2mp D A~12h2!3

j22h2 , ~4.23!

ur52sign~x!S DP a

2mp D h~12h2!Aj221

j22h2 , ~4.24!

P5PI1DPF1

2
1sign~x!

1

p SAj221

j22h2 1arctanAj221D G .
~4.25!

Here, the curvilinear coordinates~j,h! are related with the
coordinates (x,r ) as

x2

j221
1

r 2

j2 5a2,
x2

h221
1

r 2

h2 5a2 0<h<1<j.

~4.26!

The mass flow rateṀor is easily obtained

Ṁorud I→`5nImE
0

a

ux~x,r !rdr 52
nIma3DP

3m
. ~4.27!

With the help of~3.96!, ~4.9! and ~4.10! the dimensionless
flow rateG P

or is obtained as

G P
or5

2

3Ap
d I50.376d I . ~4.28!

4.4.2. Large Pressure Drop

The mass flow through an orifice caused by a large pres-
sure drop (PI@PII) in the hydrodynamic regime~d I@1 and
d II@1! was estimated by Liepmann.75 Considering the ori-
fice as a nozzle, to which one can apply the Euler equation,
Liepmann obtained

G or5A~z!A2pzS 2

z11D ~z11!/2~z21!

, ~4.29!

wherez is the ratio of the specific heats andA is a coefficient
to be obtained from an experiment. In Table 28 the depen-
dence ofA andG or on z is presented.

4.5. Applicability to Polyatomic Gases

The conclusions on the applicability of the data presented
in this section can be based on the experimental data by
Borisov et al.18 They measured the mass flow rate through
an orifice under the small pressure drop for both monatomic
and polyatomic gases. As it was pointed out in Sec. 4.3.3 the
difference of the flow rate for different gases was within
0.3%. There are no analogous data on the slit flow, but the
conclusion will very likely be the same. So, the results given
in the present section on the coefficientG P, i.e., the data
presented in Table 26 and Eqs.~4.11!–~4.13!, ~4.22!, ~4.28!
can be successfully applied to any gas including a poly-
atomic one.

Since the thermal creep through a long capillary is very
affected by the internal structure of molecules, it would be
logical to conclude that the coefficientG T for a polyatomic
gas differs significantly from that for a monatomic one. So,
the data presented in Table 27 can be applied to monatomic
gases only.

In the case of the large pressure drop the free molecular
mass flow~4.4! and ~4.5! does not depend on the internal
structure of molecules, while the hydrodynamic flow rate
~4.29! depends on the ratio of the specific heats and hence,
on the molecular structure. The variation ofG or for different
gases is within 6%~see Table 28!.

It is obvious that with the decreasing rarefaction parameter
d I the influence of the internal molecular structure will de-
crease. It will vanish atd I50 for any pressure drop. From
Sec. 4.3.3 one can see that this influence vanishes at the
small pressure drop for any rarefaction parameter. So, we
may conclude that the influence of the internal molecular
structure on the isothermal mass flow rate is largest in the
hydrodynamic regime (d II@1) at the large pressure drop
(PI@PII). From Table 28 one can see that for gases with the
specific heat ratio being in the range 1.3,z,1.66 the influ-
ence of the internal structure on the mass flow rate does not
exceed 6%.

5. Gas Flow Through Capillaries
of Finite Length

5.1. Remarks

In this section, we consider the gas flow through a capil-
lary with a finite length-to-diameter ratio. The sketch of
the gas flow and the coordinates are given in Fig. 1. Like
the slit/orifice flow here the main difficulty is the calculation
of the flow field in the containers near the capillary
entrances. To overcome this difficulty, usually it is
assumed4,32,113,114,127,174that the molecules come to the cap-
illary with the Maxwellian distribution function, i.e., there is
no variation of the distribution function in the containers.
This supposition can be justified only in the free-molecular

TABLE 28. Dependence ofA andG or on z by Liepmann~Ref. 75!

Gas z A G or

Ar 1.66 0.812 1.476
N2 1.40 0.824 1.414

CO2 1.30 0.830 1.388
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regime. However, in the transition and hydrodynamic re-
gimes the distribution function of the molecules entering into
the capillary from the containers significantly differs from
the Maxwellian. That is why the above mentioned supposi-
tion gives a great error in the calculation.

Here we consider only papers providing numerical data on
the mass flow rate without this supposition. The definitions
of the rarefaction parametersd I andd II ~3.96! will be used in
this section. Since the heat flux through finite capillaries is
investigated very poorly, it will not be considered here. The
reader interested in the heat flux can find the corresponding
data in Refs. 144, 146.

5.2. Free-Molecular Regime

5.2.1. Transmission Probability

Let us consider the collisionless regime (d I5d II50). In
this case the mass flow rate can be calculated in terms of the
transmission probability. LetWI→II be a probability that a
particle entering into capillary from the left container will go
out to the right one. The quantityWI→II is called the trans-
mission probability. LetWII→I be a transmission probability
from the right container to the left one. Then, the mass flow
rate can be calculated as

for channel

Ṁ fm
ch5WI→II

ch Ṁ fm,I
sl 2WII→I

ch Ṁ fm,II
sl , ~5.1!

for tube

Ṁ fm
tb 5WI→II

tb Ṁ fm,I
or 2WII→I

tb Ṁ fm,II
or , ~5.2!

whereṀ fm,I andṀ fm,II are mass flows into the capillary from
the left and right container, respectively. Calculating them
with the help of~4.2! and ~4.3! we have

Ṁ fm
ch5aS m

2pkB
D 1/2S WI→II

ch PI

ATI

2WII→I
ch PII

ATII
D , ~5.3!

Ṁ fm
tb 5a2S pm

2kB
D 1/2S WI→II

tb PI

ATI

2WII→I
tb PII

ATII
D . ~5.4!

In the case of isotropic capillary when

WI→II5WII→I5W, ~5.5!

we have

Ṁ fm
ch5aS m

2pkB
D 1/2

WchS PI

ATI

2
PII

ATII
D , ~5.6!

Ṁ fm
tb 5a2S pm

2kB
D 1/2

WtbS PI

ATI

2
PII

ATII
D . ~5.7!

Thus, if one knows the transmission probabilityW, one
easily calculates the mass flow rate in the free molecular
regime.

5.2.2. Diffuse Scattering

In the case of the perfect accommodation of the gas on the
surface, i.e., the diffuse scattering~2.22!, the transmission
probabilities satisfy Eq.~5.5! and can be calculated by two
methods: using Clausing’s equation~2.93! or by the test par-
ticle Monte Carlo~MC! method described in Sec. 2.11.2.

Clausing49 was the first to derive the integral equation
~2.93! and solve it. De Marcus and Hopper52,53 performed a
more accurate solution of the integral equation by the varia-
tional method. Berman8 offered the following analytical ex-
pressions forW based on the variational solution

for channel

Wch5
1

2
@11~11L2!1/22L#

2

3

2
$L2 ln@L1~L211!1/2#%2

L313L2142~L214!~11L2!1/2, ~5.8!

TABLE 29. Transmission probabilityWch vs L: diffuse scattering

L

Wch

a b c

0.1 0.9525 0.9525 ¯

0.2 0.9096 0.9096 ¯

0.4 0.8362 0.8362 ¯

0.5 0.8047 0.8048 0.8047
1.0 0.6844 0.6848 0.6844
2.0 0.5421 0.5417 0.5421
4.0 0.3992 0.3999 ¯

5.0 0.3565 0.3582 0.3565
10.0 0.2408 0.2457 ¯

aEquation~5.8!.
bClausing~Ref. 49!.
cYamamoto and Asai~Ref. 174!.

TABLE 30. Transmission probabilityWtb vs L: diffuse scattering

L

Wtb

a b c d

0.1 0.9524 0.9524 ¯ 0.9535
0.2 0.9092 0.9092 ¯ 0.9109
0.4 0.8341 0.8341 ¯ 0.8332
0.5 0.8013 0.8013 ¯ 0.8007
1.0 0.6720 0.6720 ¯ 0.6716
2.0 0.5142 0.5136 0.5142 0.5135
4.0 0.3566 0.3589 ¯ 0.3548
5.0 0.3105 0.3146 ¯ 0.3090

10.0 0.1910 0.1973 ¯ 0.1919
20.0 0.1094 0.1135 0.1093 0.1098
40.0 0.05949 0.0613 0.05946 0.05977
80.0 0.03127 0.0319 0.03125 0.03119

aEquation~5.9!.
bClausing~Ref. 49!.
cNeudachinet al. ~Ref. 112!.
dMC method.
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for tube

Wtb511
L2

4
2

L

4
~L214!1/2

2
@~82L2!~L214!1/21L3216#2

72L~L214!1/22288 ln@L/21~L2/411!1/2#
.

~5.9!

A direct numerical solution of the Clausing equation
~2.93! for the channel was obtained by Yamamoto and
Asai.174 In Table 29 the values of the transmission probabil-
ity Wch calculated with the help of Eq.~5.8! ~second col-
umn!, the results by Clausing49 ~third column! and data by
Yamamoto and Asai174 ~fourth column! are presented. One
can see that at the larger values ofL the results by Clausing
are slightly overstated. There is an excellent agreement~to
four significant figures! between the direct numerical
solution174 and Eq.~5.8!.

Neudachinet al.112 obtained the variational solution of the
integral equation~2.93! for the tube. In the book by Bird10

the simple program to calculate the transmission probability
Wtb by the test particle MC method is given. Using this pro-
gram one can easily calculate the transmission probability
Wtb for anyL. In Table 30 the values ofWtb calculated with
the help of Eq. ~5.9! ~second column!, the results of
Clausing49 ~third column!, the data by Neudachinet al.112

~fourth column! and the results obtained with the help of the
program by Bird10 ~fifth column! are presented. Here, we
may also conclude that Eq.~5.9! is in excellent agreement

with the results of the work112 and with the data obtained by
the MC method. The results by Clausing are overstated for
largeL.

5.2.3. Diffuse-Specular Scattering

The Clausing equation~2.93! for the diffuse-specular gas–
surface interaction~2.23! was solved by De Marcus53 only
for the tube. The results are presented in Table 31.

To apply the MC method to the diffuse-specular scattering
a small modification of the program by Bird10 is necessary.
In Table 32 the results obtained with the help of the modified
program are presented. One can see that the results based on
the variational method53 and the MC results are in good
agreement.

No data onWch are available in the literature for the
diffuse-specular reflection. But it can be easily obtained by
the test particle MC method described by Bird.10

5.2.4. Surface Roughness

The influence of the wall roughness on the transmission
probability was investigated by Daviset al.50 and by Porod-
nov et al.121 The roughness can be characterized by two
quantities: the ratio of the roughness height to the capillary
diameterh/a; and the angle of the roughness inclination.
Generally it is necessary to define the distribution function of
both quantities. It is difficult to give some quantitative de-
pendence of the transmission probability on the roughness.
From the results of Refs. 50, 121 we can say only that:~i! the
influence approaches its maximum value if the capillary di-
ameter is comparable with its own length provided that the
roughness has a ‘‘saw’’ form with an inclination of about
45°. In this case the decrease of the transmission probability
exceed 10% even forh/a50.05. It should be noted that a
nonsymmetric ‘‘saw’’ can make the capillary nonisotropic,
i.e., the condition~5.5! can be violated.

5.2.5. Thermomolecular Pressure Difference

To relate the TPD exponentg with the transmission prob-
ability we assume that the total mass flow through a tube is
zero. Then, from~5.3! or ~5.4! we have

WI→II

PI

ATI

5WII→I

PII

ATII

. ~5.10!

If one rewrites this equation in the form~1.5! one obtains
the following expression for the exponentg:

g5
1

2
2

ln~WI→II /WII→I!

ln~TI /TII !
. ~5.11!

It can be seen that under the condition~5.5! the exponent
g51/2 for both channel and tube. Thus, the diffuse-specular
gas–surface interaction always givesg51/2 in the free-
molecular regime.

Experimental data on the exponentg are available in the
literature.55,64 The experiment with a smooth Pyrex tube55

gave g50.4. This means that the transmission probability

TABLE 31. Transmission probabilityWtb vs L anda by de Marcus~Ref. 53!:
variational method

L

Wtb

a50.4 a50.6 a50.8

2 0.74693 0.65890 0.58247
100 ¯ 0.054743 0.036744

TABLE 32. Transmission probabilityWtb vs L anda: MC method

L

Wtb

a50.4 a50.6 a50.8

0.1 0.9808 0.9707 0.9626
0.2 0.9625 0.9440 0.9263
0.4 0.9274 0.8971 0.8641
0.5 0.9136 0.8732 0.8357
1.0 0.8485 0.7847 0.7280
2.0 0.7476 0.6568 0.5818
4.0 0.6181 0.5093 0.4248
5.0 0.5728 0.4634 0.3796

10.0 0.4240 0.3212 0.2476
20.0 0.2880 0.2040 0.1485
40.0 0.1803 0.1191 0.08373
50.0 0.1526 0.09970 0.06877

100.0 0.08722 0.05457 0.03668
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from the ‘‘hot’’ container to the ‘‘cold’’ oneWI→II is larger
than the transmission probability in the opposite direction
WII→I . Since the diffuse-specular scattering leads tog51/2
at any value of the parametera, it cannot correctly describe
this experimental result. It would be more correct to use
another gas–surface interaction law, i.e., the Cercignani–
Lampis kernel~2.24!.

The experiments with a leached Pyrex tube, which pro-
vides the diffuse scattering, gaveg51/2 as the theory pre-
dicts.

5.3. Reduced Flow Rates

To present the mass flow rates through a tube we will use
the notation~3.102!. Let us introduce an analogous notation
for the channel flow as

Gch5
L

aPI
S 2kBTI

m D 1/2

Ṁ ch. ~5.12!

If the pressure and the temperature drops are small, i.e.,
DP/PI!1 andDT/TI!1, both flow ratesGch andGtb can be
decomposed as

G52GP

DP

PI
1GT

DT

TI
. ~5.13!

One must not confuse the coefficientsG* P and G* T intro-
duced in Sec. 3.2. with those introduced here. The matter is
that G* P andG* T are used only for long capillaries but for
any pressure and temperature drops, whileGP and GT are
used only for small pressure and temperature drops but for
any capillary length. The coefficients coincide if the capillary
is long and at the same time the pressure and temperature
drops are small. Note that the coefficientsGP and GT have
been introduced so as their relation with the rarefaction pa-
rametersd I and d II does not contain any specific character-
istic of gas. So, representing theoretical data on these coef-
ficients it is not necessary to specify the gas.

5.4. Hydrodynamic Regime

The mass flow rate through a capillary of finite length first
was obtained in the hydrodynamic regime under the suppo-
sition of the small pressure dropDP/PI!1. Under this con-
dition we may considerd I5d II . The capillary can be con-
sidered as a resistor to the gas flow: when the capillary is
longer, the mass flow rate is smaller at the same pressure
difference. So, the capillary resistance is proportional to the
capillary length. Since the capillary ends create an additional
resistance for the flow, the idea was to substitute the real
length by some effective length. Mathematically this means

GP
ch5

d I

6

L

L1DLch, GP
tb5

d I

4

L

L1DL tb . ~5.14!

The additional lengthsDL would not depend on the real
capillary lengthL. This representation ofGP provides the
expressions~3.65! in the limit of the infinite length.

The additional lengthDL tb for the tube flow was calcu-
lated by Weissberg164 based on the solution of the Navier–
Stokes equation by the variational method. It was found that
the upper limit as:DL tb<3.47p/8. If one calculatesDL tb

from the hydrodynamic solution of the orifice flow~4.28!
taking into account the relation

G P
or5Ap lim

L→0

GP
tb

L
5

Ap

4

d I

DL tb , ~5.15!

one obtainsDL tb53p/8, which is close to the upper limit.
Thus, we may assume that the formula

GP
tb5

d I

4

L

~L13p/8!
~5.16!

is valid for any tube length in the hydrodynamic regime.
The same formula can be obtained for the channel flow.

Taking into account the relation

G P
ch5Ap lim

L→0

GP
ch

L
5

Ap

6

d I

DLch ~5.17!

and the hydrodynamic solution~4.22!, we obtain
DLch58/(3p). For the mass flow rate through a channel we
have

GP
ch5

d I

6

L

@L18/~3p!#
, ~5.18!

which gives the correct value of the mass flow rate in both
limits L50 andL→`.

TABLE 33. Reduced flow rateGP
ch vs L in the hydrodynamic regime

L

GP
ch/d I

a b

1 0.0908 0.0901
5 0.1427 0.1425

10 0.1538 0.1536
30 0.1622 0.1621

aAkinshin et al. ~Ref. 5!.
bEquation~5.18!.

TABLE 34. Reduced flow rateGP
ch vs L and d I by Sharipov~Ref. 132!:

diffuse scattering

d I

GP
ch

L51 L55 L510 L530

0.0 0.386 1.00 1.35 1.97
0.02 0.391 1.00 1.35 1.88
0.04 0.396 1.00 1.34 1.81
0.1 0.406 1.01 1.32 1.68
0.2 0.421 1.02 1.28 1.57
0.4 0.447 1.03 1.26 1.49
1.0 0.512 1.10 1.27 1.43
2.0 0.601 1.19 1.36 1.50
4.0 0.762 1.43 1.61 1.76
8.0 1.00 1.89 2.13 2.32

10.0 1.18 2.18 2.44 2.65
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Exact numerical calculations of the Stokes equation~4.16!
for the viscous flow through a finite channel was carried out
by Akinshin et al.5 The results of the calculations are pre-
sented in Table 33. The comparison of these numerical re-
sults with the formula~5.18! shows that there is perfect
agreement between them.

Thus, the formulas~5.16! and ~5.18! can be successfully
used in the hydrodynamic regime for a capillary of arbitrary
length if the pressure drop is smallDP/PI!1.

5.5. Transition Regime

5.5.1. Isothermal Flow Through a Channel

Exact numerical results of the gas flow through a channel
caused by the small pressure drop (DP/PI!1) were ob-
tained by Sharipov132,144,146 applying the integro-moment
method to the BGK model and to the S model. The results
based on the BGK model are presented in Table 34. The
values of the coefficientGP

ch obtained from the S model co-
incide with those obtained from the BGK model.

An analysis of the data shows that in the transition regime
we also may utilize the idea of the effective length, i.e, the
flow rate through the finite channelGP

ch can be related with
the flow rate through the infinite channelG

*P
ch as

GP
ch~L,d I!5

L

L1DLchG
*P
ch ~d I!, ~5.19!

where the additional lengthDLch depends only on the rar-
efaction parameterd I . Unfortunately, for an intermediated I

we cannot apply Eq.~5.19! in the whole range of the length
L. The range of the application depends on the precision that
one needs. If the precision is 2% the application of Eq.~5.19!
is restricted by the following condition

d IL>20. ~5.20!

In Table 35 the quantityDLch as a function ofd I is pre-
sented. These data and those given in Table 3 can be used to
calculate the flow rateGP

ch if the dimensionless length satis-
fies the condition~5.20!.

5.5.2. Isothermal Flow Through a Tube

There are not any rigorous theoretical data for the gas flow
through a tube of finite length. Below, some empirical for-
mulas are given.

Small pressure drop:Lund and Berman106 obtained a
semiempirical formula for the coefficientGP

tb , which coin-
cides with all limit solutions known by 1966:~i! L50 and
d I→`, ~ii ! L→` andd I→`, ~iii ! L is arbitrary andd I50.
A lot of empirical coefficients were introduced which depend
on the type of the gas, type of capillary material and the
length-to-radius ratiol /a. Finally, the semiempirical formula

was very complicated. An analysis of the formula shows
that: ~i! the empirical coefficientsE and C ~notations of
Lund and Berman! are close to unity; the coefficients is
close to 1.6, and the coefficientA* is close to 1.1. Here, we
give the simplified formula assumingE5C51, s51.6,
A* 51.1 for all types of the gas and for all types of the
capillary

GP
tb5Gd1

G0Gt

G01Gt
, ~5.21!

where

Gd5
1.50

111.14d I
F11

0.0547d IL~0.793d I21!/~110.042L !

1117.7d I14.64d I
215.02d I

3 G
3F11

2.53d I12.67/Wtb2L

~111.61d I!L
G21

, ~5.22!

G05
2d IL

3p F11
1.35

110.557d I
G , ~5.23!

Gt5
d I

4 F11
3.79

110.954d I
G . ~5.24!

This formula can be serve for an estimate of the mass flow
rate through a tube of arbitrary length.

Large pressure drop:Fujimoto and Usami59 performed
experiments on the gas flow through a short tube
(0.05<L<25.2) at different pressure ratiosPI /PII . For the
large pressure dropPI /PII.100~it is practically outflow into
vacuum,d II50! they offered the following empirical for-
mula for the coefficientGtb defined by~3.102!

Gtb5
L

Ap
FWtb1

0.473310.907A1/~d IW !

1110.4/~d IW !116.1/~d IW !2G , ~5.25!

where

W 5
4

Ap
H Wtb10.125 expF2

~12Wtb211.2!2

2 G
10.18 exp~214.7Wtb!20.08J , ~5.26!

Wtb is the transmission probability. It is implied that the gas–
surface interaction is diffuse and the data onWtb can be
calculated by~5.9!. This formula is valid ford I,11 and
L<25.2.

5.5.3. Nonisothermal Flow Through a Channel

The nonisothermal gas flow through a capillary of finite
length is the least investigated problem considered in the
review. To our knowledge, only numerical results on the gas
flow through a channel at the small pressure and temperature
drops obtained by Sharipovet al.132,144,146are available. The
linearized S model~2.68! was applied as an input equation,
which was solved by the integro-moment method. Two tem-
perature distributions~1.1! were considered:

~i! linear distribution

TABLE 35. Additional lengthDLch vs d I : diffuse scattering

d I 0.2 0.4 1.0 2.0 4.0 8.0 10.0 `
DLch 3.52 2.67 2.02 1.63 1.43 1.44 1.33 0.84
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tw~ x̃!5
1

2
1

x̃

L
, ~5.27!

~ii ! step distribution

tw~ x̃!5H 0 for 2L/2< x̃<0,

1 for 0< x̃<L/2.
~5.28!

In Table 36 the reduced flow ratesGT
ch are presented as the

function of d I and L. One can see that the coefficientGT
ch

very slightly depends on the temperature distributiontw( x̃).

5.5.4. Thermomolecular Pressure Difference

Using the data onGT
ch ~Table 36! andGP

ch ~Table 34! one
can easily calculate the TPD exponentg for the small tem-
perature drop. To findg one has to assumeG50 in ~5.13!.
Using the smallness ofDP andDT one obtains

g5
GT

ch

GP
ch

. ~5.29!

5.6. Applicability to Polyatomic Gases

Since in the free-molecular regime there is no influence of
the molecular structure to the mass flow all results on the
transmission probability, i.e., the data given in Tables 29–33
can be applied to any gas including a polyatomic one.

There are no theoretical data on the polyatomic gas flows
through a capillary of finite length in the transition regime.
Regarding that the coefficientGP is intermediate between the
coefficientsG* P andG P, we may conclude thatGP is very
slightly dependent on the molecular structure. So the data
given in Tables 34, 35 and Eqs.~5.16!, ~5.18!, ~5.19!, ~5.21!
can be applied to any gas including a polyatomic one.

Since the thermal creep through a long capillaryG* T es-
sentially depends on the molecular structure, it is logical to
conclude that the coefficientGT for a polyatomic gas differs
significantly from that for a monatomic one. This means that
the data given in Table 36 are applied to monatomic gases
only.

6. Concluding Remarks

Numerical and analytical results on the rarefied gas flows
through capillaries of different length are analyzed in the
review. The numerical data and analytical formulas pre-
sented here can be used to calculate the mass flow rate and
the heat flux caused by both pressure and temperature drops
on the capillary ends.

In Sec. 1 geometrical parameters of capillaries and main
assumptions on the gas flow were described. Two types of
the capillary cross section were considered: the round cross
section~tube! and the cross section composed by two infinite
planes~channel!. The first type of the capillary is very im-
portant in practical calculations. The second type is an ex-
ample of the degenerated geometry, which is not met in prac-
tice but it is very important for theoretical investigations and
serves to test new numerical methods and new kinetic mod-
els.

In Sec. 2 three regimes of the gas flows were regarded:~i!
the free-molecular regime, when every molecule moves
without collision with each other;~ii ! the transition regime,
when the molecular mean free path has the same order as the
capillary diameter;~iii ! the hydrodynamic regime, when the
mean free path is so small that the gas can be considered as
continuous medium. The main methods of calculation of rar-
efied gas flows in every regime were given.

In Sec. 3 long capillaries were considered. This means that
the capillary length is so large that the end effects can be
neglected. This supposition significantly simplifies numerical
calculations because the gas flow becomes one dimensional.
That is why there is a lot of calculation data on this type of
flow. The numerical results on the flow rate and the heat flux
in the transition regime were tabulated. Analytical formulas
were offered for the near free-molecular and near hydrody-
namic regimes.

It is obvious that the most reliable results should be ob-
tained applying the Boltzmann equation or using the direct
simulation Monte Carlo method. However, to reduce the
computational efforts two recommendations, based on the
data presented in Sec. 3, can be given:

~i! The BGK model can be successfully applied for nu-
merical calculations of isothermal rarefied gas flows. It is
valid for both monatomic and polyatomic gases;

~ii ! Since the BGK model gives the incorrect Prandtl num-
ber, the S model is recommended for calculations of non-
isothermal flows of monatomic gases. In the case of noniso-
thermal flows of polyatomic gases some special model equa-
tions should be applied.

In Sec. 4 the rarefied gas flows through an infinitesimal slit
and orifice were analyzed. Because of the complexity for
numerical calculations there is little information on this type
of two-dimensional gas flows. Analytical solutions of the gas
flow through a slit and orifice are available only in the free-
molecular and hydrodynamic regimes. The reliable numeri-
cal data on the mass flow rate in the transition regime are
available only for the slit flow caused by the small pressure
and temperature drops. There are some empirical formulas

TABLE 36. Reduced flow ratesGT
ch vs L and d I by Sharipov and Seleznev

~Ref. 144!: diffuse scattering

d I

GT
ch

distr. ~5.27! distr. ~5.28!

L51 L55 L51 L55

0.02 0.192 0.491 0.191 0.491
0.04 0.190 0.480 0.190 0.480
0.1 0.186 0.452 0.186 0.453
0.2 0.180 0.416 0.180 0.417
0.4 0.169 0.367 0.169 0.366
1.0 0.146 0.285 0.146 0.280
2.0 0.118 0.217 0.118 0.211
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for the flow rate through an orifice in the transition regime.
But even from this poor information the following impor-

tant conclusion can be made: the mass flow rate caused by
the pressure drop is very weakly affected by the gas–surface
interaction law. So, further calculations of the mass flow rate
can be performed only for the diffuse scattering of molecules
on the surface without regard to the real gas–surface inter-
action law.

In Sec. 5 the rarefied gas flows through a capillary of finite
length were analyzed. In spite of the fact that this type of
flow has great importance in practice, it is investigated very
poorly. Numerical calculations in the entire range of the
Knudsen number were performed only for the isothermal gas
flow through a channel. For the flow through a tube an em-
pirical formula was offered.

Some numerical data on the free-molecular flow through a
finite capillary were given in Sec. 5. Using these data we
concluded that in this regime of gas flow the TPD exponent
g is equal to 1/2 for any capillary, if the diffuse-specular
scattering of molecules on the walls is assumed. That is, the
TPD exponent does not depend on the capillary form~tube
or channel!, on the capillary length, and on the gas–surface
interaction parametera. As was indicated this result does not
agree with the experimental data. From this fact we con-
cluded that the widely applied diffuse-specular law is not
appropriate to describe nonisothermal rarefied gas flows.

Based on the data given in the review we may outline the
main trends for further investigations of the internal rarefied
gas flows:

~i! Numerical calculations of the rarefied gas flows based
on some gas–surface interaction law different from the
diffuse-specular one would be very useful for further devel-
opment of the gas–surface interaction models. To our knowl-
edge there are only three works2,108,109 analyzing the gas
flows for different gas–surface interactions. Since these re-
sults were obtained under different conditions, it is very dif-
ficult to compare them and to indicate the reliable ones. Fur-
ther, such calculations should be carried out jointly with
experimental measurements. Comparing theoretical results
and experimental data it will be possible to select the most
adequate gas–surface interaction models and to tabulate the
accommodation coefficients.

~ii ! Until now we know almost nothing of the gas flow
through a capillary with a rectangular cross section when the
width b ~see Fig. 1! is arbitrary. We may indicate only the
paper by Loyalkaet al.105 on this topic. At the same time,
this type of gas flow is very important for both practice and
science. The fact is that one can easily control the chemical
and mechanical characteristics of the surface in the rectan-
gular channel. That is why the channel flow can serve as an
indirect measurement of the gas–surface interaction param-
eters as a function of the surface properties. It is obvious that
to apply the data on the channel flow presented in Sec. 3 the
real width of the channel must be sufficiently large to elimi-
nate the influence of the lateral walls on the gas flow. But
without numerical calculations of the gas flow through a
channel with a finite widthb one cannot estimate the value

of b, which would be sufficient to neglect by the effect of the
lateral walls.

~iii ! There is a lack of numerical data on the rarefied gas
flow through slits and orifices. The direct simulation Monte
Carlo method, which is widely applied today, is an ideal tool
to investigate such a type of gas flow. Moreover, the gas flow
through an orifice and slit has the following feature: the mass
flow rate caused by the pressure drop is not affected by the
gas–interaction law. Since the flow rate depends only on the
intermolecular interaction law, this feature can be employed
to test new molecular models.
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